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Organization 

• Week 1 to week 16  (2015-03  to 2014-06) 
• 东中院-3-102 
• Monday 3-4节; week 9-16 
• Wednesday 3-4节; week 1-16 
• lecture 10 + exercise 40 + random tests 40 + other 10   
• Ask questions in class – counted as points 
• Turn ON your mobile phone  (after lecture) 
• Slides and papers: 

– http://202.120.38.185/CS381 
• computer-security 

– http://202.120.38.185/references 
• TA: Geshi Huang  gracehgs@mail.sjtu.edu.cn 
• Send homework to the TA 

Rule: do the homework on your own! 
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Contents 
• Introduction  -- What is security?  
• Cryptography 

– Classical ciphers 
– Today’s ciphers 
– Public-key cryptography 
– Hash functions and MAC 
– Authentication protocols 

• Applications 
– Digital certificates 
– Secure email 
– Internet security, e-banking 

• Computer and network security 
– Access control 
– Malware  
– Firewall  

• Examples: Flame, Router, BitCoin ?? 
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contents 

• Public-key cryptosystems: 
– RSA    - factorization 
– DH , ElGamal  -discrete logarithm 
– ECC   

• Math 
– Fermat’s and Euler’s Theorems & ø(n)  
– Group, Fields 
– Primality Testing 
– Chinese Remainder Theorem 
– Discrete Logarithms 

 
 

演示者
演示文稿备注
Chapter 8 summary.
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Group 

• a set G, and • : G×GG be a binary operation, satisfying 
– closure：for a,b∈G，a • b ∈G； 
– associativity：for a,b,c∈G， 
            (a • b) • c=a •(b • c)； 
– (identity) There is an element e∈G, such that for any 

a∈G,   e • a=a • e=a  
– (Inverse) For any a ∈ G，there exists an element b ∈ G, 

such that,   a • b=b • a=e.  
Then  (G, •) is called to be a group. 

• A group (G, •)  is an Abelian group if it also satisfy  
– (Commutativity) For any a,b ∈ G，  a • b=b • a.  

Eample. 
•  (Z, +)，(Q, +)，(R, +);   (Zm, +) 
•  (Z*=Z\{0}， •),   (ZP* , •) 
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Cyclic group 
• Order of an element：for a∈G, compute {a,a2,…,am=1}，the 

least positive integer m such that am=1 is called to be the order 
of a. 

• {1,a, a2,…,am-1} is a cyclic group with order m. a is called the 
generator of the cyclic group. 

• Lemma: if the order of a is m and if an=1，then m|n. 
• Lemma: if the order of a is m, then the order of ak is m/gcd(k,m). 
• Theorem: if the order of group G is n, then for any subgroup of 

G,  the order of subgroup divides n. 
• Cyclic subgroups of (Z7*, •) 

– 10=1                                          {1} 
– 20=1, 21=2, 22=4, 23=1            {1,2,4} 
– 30=1, 31=3, 32=2, 33=6, 34=4, 35=5, 36=1      {1,3,2,6,4,5} 
– 40=1, 41=4, 42=2, 43=1          {1,2,4} 
– 50=1, 51=5, 52=4, 53=6, 54=2, 55=3, 56=1            {1,5,4,6,2,3} 
– 60=1, 61=6, 62=1                      {1,6} 
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Field 

• Let F be a set, and • and + are binary operations 
defined over F, satisfying 
– (F,+) is an Abelian additive group with identity 0； 
–  (F\{0}, •) is a multiplicative group, with identity 1； 
– Distributive law: For any a,b,c ∈ F: a • (b+c)=a • b+ a • c 

 (F,+, •) is called to be a field. 

Galois, 

1811～1832  

Example: let p be a prime, then 
(Zp,+, •) is a field, called Galois 
Field, denoted as GF(P)=Fp. 

☆ 
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Discrete logarithm 

•  For any 0<x<p in GF(p). 
– Given x and g, compute y ≡ gx(mod p) is called 

modular exponentiation,  
– Given g and y, to find x such that y ≡ gx(mod p) is 

called discrete logarithm, written as x = logg y (mod p) 
• exponentiation is relatively easy, with computation 

complexity O(log2(p))。 
• finding discrete logarithms is generally a hard problem  

☆ 
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 Diffie-Hellman Key Agreement 

Alice

Choose     a
Compute   ga mod p
             

Parameters:  p, g

Bob

Choose     b
Compute   gb mod p
             

ga mod p

gb mod p

Compute   gab mod p
             

Compute   gab mod p
             

W.Diffie and M.E.Hellman, “New Directions in 
Cryptography”, IEEE Transaction on Information 
Theory, V.IT-22.No.6, Nov 1976, PP.644-654 

gab is the secrete key shared by Alice and Bob 

☆ 
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ElGamal encryption algorithm 
• Set up: GF(p), and g the primitive element. 
• Users’ key generation： 

– user U randomly chooses  x ∈GF(p)*as his private key. 
– Compute y ≡ gx (mod p)  as his public key. 

• Encryption: suppose that Alice wants to send Bob a 
message m∈GF(p). She uses Bob’s public key yb, 
– Alice randomly chooses an integer r, and compute R = gr  
– Alice computes S=m • yb

r (mod p) ； 
• Alice sends (R,S) to Bob 
• Decryption: Bob uses his own private key to decrypt m from 

(R,S) : m = S/Rxb = (m • yb
r)/(gr)xb 

 

☆ 
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Alice  SKA=(xA)
           PKA=( yA) = (gxA mod p)
             

(R,S)

Compute m=S/RxB mod p

Get PKB,

Compute R=gr mod p
Compute S=m yB

r mod p

Parameters:  p, g

Bob   SKB=(xB)
           PKB=( yB) = (gxB mod p)
             

ElGamal encryption algorithm 
Alice sends Bob a message m∈ GF(p). Using Bob’s public key  

m = S/Rxb = (m • yb
r)/(gr)xb 



2015/5/13 
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ElGamal Signature Algorithm 

• Parameters are chosen as in encryption algorithm. 
– Alice’s private key is xa, and public key is  ya=gxa 

– Bob’s private key is xb, and public key is yb=gxb 

• Signing 
– Alice randomly chooses an integer r  
    such that gcd(r, p−1)=1, and gets R=gr 
– Alice uses her own private key xa to compute 

    S=r-1(m− xaR) (mod p−1) 
• Alice sends (m, R, S)  to Bob 
• Verification 

– Bob verifies gm=ya
RRS  (mod p)  
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ElGamal Signature Algorithm 

Alice  SKA= xA

           PKA= yA = (gxA mod p)
             

(m, R,S)

Verify  gm=yA
RRS mod p

Choose r, such that  gcd(r, p-1)=1
Compute R=gr mod p

Compute S=r-1(m - xA R)  mod p-1

Parameters:  p, g

Bob   SKB= xB

          PKB = yB = (gxB mod p)
             



Complexity of Dlog 

• Similar to factoring large number n, for 
discrete logarithm, the complexity of currently 
known algorithms is about  
  exp( b1/3 log2/3(b) )   b=log(p)   (number field sieve) 

 
• b should be at least 1024 bit 

 
• Use strong prime: p-1 has large factors. 
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Chinese Remainder Theorem 

• Find a number x that leaves 
–  a remainder of 2 when divided by 3,  
–  a remainder of 3 when divided by 5,  
–  a remainder of 4 when divided by 7.  

• If 
 x ≡ 2 (mod 3) 
       x ≡ 3 (mod 5) 
  x ≡ 4 (mod 7) 
• x=? 
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Chinese Remainder Theorem 

• Let (n1, n2,…,nk)  be pairwise relatively prime 
positive integers. Then the system of congruence  
– x≡ a1 (mod n1)  
– x≡ a2 (mod n2)  
– …… 
– x≡ ak (mod nk)  

has a unique solution (modulo  n1n2…nk ) 

• Solution 
n=n1n2…nk ,   mi=n/ni  ,  mi ’= mi

-1 (mod ni) 
     x=a1m1m1’+a2m2m2’+…+akmkmk’ 

☆ 



CS555 Spring 2012/Topic 12 
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Chinese Reminder Theorem 
(CRT) 

 Theorem 
  Let n1, n2, ,,, nk be integers s.t. gcd(ni, nj) = 1 for 

any i ≠ j.  
 
     
 
 
 
 
 
 
   There exists a unique solution modulo   

 n = n1 n2 … nk 

kk nax

nax
nax

mod
...

mod
 mod 

22

11

≡

≡
≡
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Proof of CRT 

• Consider the function χ: Zn→ Zn1 × Zn2 × … × Znk
 χ(x) = (x mod n1, …, x mod nk) 

• We need to prove that χ is a bijection. 
• For 1≤i≤k, define mi = n / ni, then gcd(mi,ni)=1 
• For 1≤i≤k, define yi = mi

-1 mod ni 

• Define function ρ(a1,a2,…,ak) = Σ  aimiyi  mod n, 
this function inverts χ 
– aimiyi ≡ ai (mod ni) 
– aimiyi ≡ 0 (mod nj)  where i ≠ j 



CS555 Spring 2012/Topic 12 
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An Example Illustrating 
Proof of CRT 

• Example of the mappings:    
– n1=3, n2=5, n=15 
– m1=5, y1=m1

-1 mod n1=2, 5⋅2 mod 3 = 1 
– m2=3, y2=m2

-1 mod n2=2, 3⋅2 mod 5 = 1   
 

– ρ(2,4)  = (2⋅5⋅2 + 4⋅3⋅2) mod 15  
  = 44 mod 15 = 14 

– 14 mod 3 = 2, 14 mod 5 = 4 
 



Solve ax ≡ b (mod p) 

An exhaustive search for all 0 ≤ x < p 
•Check only for even x or odd x according to b(p-1)/2 ≡ 
(ax)(p-1)/2 ≡(a(p-1)/2)x ≡(-1)x≡ 1 or -1 (mod p), where a is a 
primitive root 
 
(Ex) p=11, a=2, b=9, since b(p-1)/2 ≡95≡1, 
then check for even numbers {0,2,4,6,8,10}  
only to find x=6 such that 26 ≡ 9 (mod 11) 



2015/5/13 
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Attack when p-1 consists of small primes 

• Suppose p-1=2n，a  is a generator of Zp* 

• Given b=ax mod p, to compute x=? 
– Let x=2n-1xn-1+…+2x1+x0 

– If b2n-1=1, then x0 =0; if b2n-1=-1, then x0 =1. 
– Compute b1=b/ax0 

– If b1
2n-2=1, then x1 =0, if b1

2n-2=-1, then x1 =1. 
– Compute b2=b1/a2x1 

– … 
– If bn-1=1, then xn-1 =0, if bn-1=0 then xn-1 =1 

 



Solve ax ≡ b (mod p) by 
Pohlig-Hellman 

Works if p-1 can be factorized into small numbers, i.e., 
  p-1=q1q2…qr 
For every factor q|(p-1), do the following: 
 write b0 =b,and, x=x0 + x1q +x2q2 + … + xr-1qr-1  for 0 ≤ xi ≤ q-1 
1. Find 0≤ k ≤q-1 such that (a(p-1)/q)k≡b(p-1)/q mod p, 
         then x0 ≡k, next let b1≡b0a-x0 
2. Find 0≤ k ≤q-1 such that (a(p-1)/q)k≡[b1](p-1)/q^2 , then x1 ≡k, nex  

let b2≡b1a-x1 

3. Repeat steps 1, 2 until xr-1 is found 
4. Repeat steps 1~3 for all q’s, then apply Chinese Remainder 

Theorem to get the final solution   
 



The correctness of Pohlig-Hellamn 
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7x ≡12 (mod 41);  p=41, a=7, 
b=12,  

• p-1=41-1=40 =23 5 
• b0 =12 
• For q=2: b0 =12, b1 =31, b2=31, and 
   x = x0 +2x1+4x2 ≡1+2·0+4·1≡ 5 (mod 8) 
• For q=5: b0 =12, b1 =18, and 
   x = x0 ≡ 3 (mod 5) 
Solving x ≡ 5 (mod 8) and x≡ 3 (mod 5),   
We have x≡13 (mod 40) 



Primality Testing 

• often we need to find large prime numbers  
• traditionally sieve using trial division  

– i.e. divide by all numbers (primes) in turn less than the 
square root of the number  

– only works for small numbers 
• alternatively can use statistical primality tests based 

on properties of primes  
– for which all primes numbers satisfy property  
– but some composite numbers, called pseudo-primes, 

also satisfy the property 
• can use a slower deterministic primality test 

演示者
演示文稿备注
For many cryptographic functions it is necessary to select one or more very large prime numbers at random.
Thus we are faced with the task of determining whether a given large number is prime.
Traditionally sieve for primes using trial division of all possible prime factors of some number, but this only works for small numbers.
Alternatively can use repeated statistical primality tests based on properties of primes, and then for certainty, use a slower deterministic primality test, such as the AKS test.




Some facts about primes 
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Miller Rabin Algorithm 

• based on Fermat’s Theorem:  ap-1 = 1 (mod p) 
• TEST (n): 

1. Find integers k, q, k > 0, q odd, so that (n–1)=2kq 
2. Select a random integer a, 1<a<n–1 
3. if aq mod n = 1 then return (“inconclusive"); 
4. for j = 0 to k – 1 do 
 5. if (a2jq mod n = n-1) 
    then return("inconclusive") 
6. return ("composite") 

• Prob(inconclusive but p not prime) < ¼    [KNUT98] 
– repeat test with different random a 
– Prob(n is prime after t tests) = 1-4-t  (0.99999 for t=10) 

 
 

☆ 

演示者
演示文稿备注
The algorithm shown is due to Miller and Rabin is typically used to test a large number for primality. See Stallings section 8.3 for its proof, which is based on Fermat’s theorem.




Summary 

• Public-key cryptosystems: 
– RSA    - factorization 
– DH , ElGamal  -discrete logarithm 
– ECC   

• Math 
– Fermat’s and Euler’s Theorems & ø(n)  
– Group, Fields 
– Primality Testing 
– Chinese Remainder Theorem 
– Discrete Logarithms 

 
 

演示者
演示文稿备注
Chapter 8 summary.



Exercise 9 –  PKC 

1. If  x=2 (mod 3)  x=3 (mod 5)  x=4 (mod 7), what is x? 
2. compute ф(24)=#{ ? }, and ф(n) for n=p1

e1 p2
e2 p3

e3  
3. Prove：in ElGamal Signature Algorithm, the Verification 

test gm=ya
RRS  (mod p) is valid. 

4. ElGamal encryption use a random integer r for each 
message, what will happen if r is used twice?  
 
send the solutions to   gracehgs@mail.sjtu.edu.cn  
Deadline: May 19th 
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