

Computer Security and Cryptography

CS381

来学嘉 计算机科学与工程系 电院3-423室 34205440 1356 4100825 laix@sjtu.edu.cn

2015-05

Organization

- Week 1 to week 16 (2015-03 to 2014-06)
- 东中院-3-102
- Monday 3-4节; week 9-16
- Wednesday 3-4节; week 1-16
- lecture 10 + exercise 40 + random tests 40 + other 10
- Ask questions in class counted as points
- Turn ON your mobile phone (after lecture)
- Slides and papers:
 - http://202.120.38.185/CS381
 - computer-security
 - http://202.120.38.185/references
- TA: Geshi Huang gracehgs@mail.sjtu.edu.cn
- Send homework to the TA

Rule: do the homework on your own!

Contents

- Introduction -- What is security?
- Cryptography
 - Classical ciphers
 - Today's ciphers
 - Public-key cryptography
 - Hash functions and MAC
 - Authentication protocols
- Applications
 - Digital certificates
 - Secure email
 - Internet security, e-banking
- Computer and network security
 - Access control
 - Malware
 - Firewall
- Examples: Flame, Router, BitCoin ??

References

- W. Stallings, *Cryptography and network security principles and practice*, Prentice Hall.
- W. Stallings, 密码学与网络安全: 原理与实践(第4版), 刘玉 珍等译, 电子工业出版社, 2006
- Lidong Chen, Guang Gong, *Communication and System Security*, CRC Press, 2012.
- A.J. Menezes, P.C. van Oorschot and S.A. Vanstone, *Handbook of Applied Cryptography*. CRC Press, 1997, ISBN: 0-8493-8523-7, http://www.cacr.math.uwaterloo.ca/hac/index.html
- B. Schneier, *Applied cryptography*. John Wiley & Sons, 1995, 2nd edition.
- 裴定一,徐祥, 信息安全数学基础, ISBN 978-7-115-15662-4, 人民 邮电出版社,2007.

- Public-key cryptosystems:
 - -RSA factorization
 - DH, ElGamal -discrete logarithm – ECC
- Math
 - Fermat's and Euler's Theorems & ø(n)
 - Group, Fields
 - Primality Testing
 - Chinese Remainder Theorem
 - Discrete Logarithms

- a set G, and •: $G \times G \rightarrow G$ be a binary operation, satisfying
 - closure: for $a, b \in G$, $a \bullet b \in G$;
 - associativity: for $a, b, c \in G$,

 $(a \bullet b) \bullet c = a \bullet (b \bullet c);$

- (identity) There is an element $e \in G$, such that for any $a \in G$, $e \circ a = a \circ e = a$
- (Inverse) For any $a \in G$, there exists an element $b \in G$, such that, $a \bullet b = b \bullet a = e$.

Then (G, \bullet) is called to be a group.

- A group (G, \bullet) is an Abelian group if it also satisfy
 - (Commutativity) For any $a, b \in G$, $a \bullet b = b \bullet a$.

Eample.

- $(Z, +), (Q, +), (R, +); (Z_m, +)$
- $(Z^*=Z\setminus\{0\}, \bullet), (Z_P^*, \bullet)$

Cyclic group

- Order of an element: for *a*∈*G*, compute {*a*,*a*²,...,*a^m*=1}, the least positive integer *m* such that *a^m*=1 is called to be the order of *a*.
- {1,*a*, *a*²,...,*a*^{*m*-1}} is a cyclic group with order *m*. *a* is called the generator of the cyclic group.
- Lemma: if the order of *a* is *m* and if $a^n=1$, then m|n.
- Lemma: if the order of a is m, then the order of a^k is m/gcd(k,m).
- Theorem: if the order of group G is n, then for any subgroup of G, the order of subgroup divides n.
- Cyclic subgroups of (Z₇*, •)

- 1 ⁰ =1	{1}
$-2^{0}=1, 2^{1}=2, 2^{2}=4, 2^{3}=1$	{1,2,4}
$-3^{0}=1, 3^{1}=3, 3^{2}=2, 3^{3}=6, 3^{4}=4, 3^{5}=5, 3^{6}=1$	{1,3,2,6,4,5}
$-4^{0}=1, 4^{1}=4, 4^{2}=2, 4^{3}=1$	{1,2,4}
$-5^{0}=1, 5^{1}=5, 5^{2}=4, 5^{3}=6, 5^{4}=2, 5^{5}=3, 5^{6}=1$	{1,5,4,6,2,3}
$-6^{0}=1, 6^{1}=6, 6^{2}=1$	{1,6}

mart

 Table 8.3
 Powers of Integers, Modulo 19

17 a	Table	Table 8.3 Powers of Integers, Modulo 19																
	а	a ²	a ³	a ⁴	a ⁵	a ⁶	a ⁷	a ⁸	a ⁹	a ¹⁰	a ¹¹	a ¹²	a ¹³	a ¹⁴	a ¹⁵	a ¹⁶	a ¹⁷	a ¹⁸
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	2	4	8	16	13	7	14	9	18	17	15	11	3	6	12	5	10	1
	3	9	8	5	15	7	2	6	18	16	10	11	14	4	12	17	13	1
	4	16	7	9	17	11	6	5	1	4	16	7	9	17	11	6	5	1
	5	6	11	17	9	7	16	4	1	5	6	11	17	9	7	16	4	1
	6	17	7	4	5	11	9	16	1	6	17	7	4	5	11	9	16	1
	7	11	1	7	11	1	7	11	1	7	11	1	7	11	1	7	11	1
	8	7	18	11	12	1	8	7	18	11	12	1	8	7	18	11	12	1
	9	5	7	6	16	11	4	17	1	9	5	7	6	16	11	4	17	1
	10	5	12	6	3	11	15	17	18	9	14	7	13	16	8	4	2	1
	11	7	1	11	7	1	11	7	1	11	7	1	11	7	1	11	7	1
	12	11	18	7	8	1	12	11	18	7	8	1	12	11	18	7	8	1
	13	17	12	4	14	11	10	16	18	6	2	7	15	5	8	9	3	1
	14	6	8	17	10	7	3	4	18	5	13	11	2	9	12	16	15	1
	15	16	12	9	2	11	13	5	18	4	3	7	10	17	8	6	14	1
	16	9	11	5	4	7	17	6	1	16	9	11	5	4	7	17	6	1
	17	4	11	16	6	7	5	9	1	17	4	11	16	6	7	5	9	1
	18	1	18	1	18	1	18	1	18	1	18	1	18	1	18	1	18	1

- Let *F* be a set, and and + are binary operations defined over *F*, satisfying
 - -(F,+) is an Abelian additive group with identity 0;
 - $(F \setminus \{0\}, \bullet)$ is a multiplicative group, with identity 1;
 - Distributive law: For any $a,b,c \in F$: $a \cdot (b+c)=a \cdot b+a \cdot c$
 - $(F,+,\bullet)$ is called to be a field.

Example: let *p* be a prime, then $(Z_p, +, \bullet)$ is a field, called Galois Field, denoted as $GF(P)=F_p$.

Discrete logarithm

- For any 0<*x*<*p* in GF(*p*).
 - Given x and g, compute $y \equiv g^x \pmod{p}$ is called modular exponentiation,
 - Given g and y, to find x such that $y \equiv g^x \pmod{p}$ is called discrete logarithm, written as $x = \log_g y \pmod{p}$
- exponentiation is relatively easy, with computation complexity O(log₂(p)).
- finding discrete logarithms is generally a hard problem

Diffie-Hellman Key Agreement

W.Diffie and M.E.Hellman, "New Directions in Cryptography", IEEE Transaction on Information Theory, V.IT-22.No.6, Nov 1976, PP.644-654

Parameters: *p*, *g*

g^{ab} is the secrete key shared by Alice and Bob

- **ElGamal encryption algorithm**
- Set up: GF(p), and g the primitive element.
- Users' key generation:
 - user U randomly chooses $\mathbf{x} \in GF(p)$ *as his private key.
 - Compute $y \equiv g^x \pmod{p}$ as his public key.
- Encryption: suppose that Alice wants to send Bob a message m∈GF(p). She uses Bob's public key y_b,
 - Alice randomly chooses an integer r, and compute $R = g^r$
 - Alice computes $S=m \cdot y_b^r \pmod{p}$;
- Alice sends (*R*, *S*) to Bob
- Decryption: Bob uses his own private key to decrypt *m* from (*R*,*S*) : *m* = *S*/*R*^x_b = (*m y*_b^r)/(*g*^r)^x_b

Alice sends Bob a message $m \in GF(p)$. Using Bob's public key

(R,S)

Parameters: *p*, *g*

Alice $SK_A = (x_A)$ $PK_A = (y_A) = (g^{xA} \mod p)$

Get $PK_{B,}$ Compute $R=g^r \mod p$ Compute $S=m y_B^r \mod p$ Bob $SK_B = (x_B)$ PK_B=(y_B) = (g^{xB} mod p)

 $m = \frac{S/R^{x_b}}{R^x} = (m \cdot y_b^r)/(g^r)^{x_b}$

Compute *m*=*S*/*R*^{xB} mod p

ElGamal Signature Algorithm

- Parameters are chosen as in encryption algorithm.
 - Alice's private key is x_a , and public key is $y_a = g^{x_a}$
 - Bob's private key is x_b , and public key is $y_b = g^{x_b}$
- Signing
 - Alice randomly chooses an integer rsuch that gcd(r, p-1)=1, and gets $R=g^r$
 - Alice uses her own private key x_a to compute

 $S = r^{-1}(m - x_a R) \pmod{p-1}$

- Alice sends (*m*, *R*, *S*) to Bob
- Verification
 - Bob verifies $g^m = y_a^R R^S \pmod{p}$

ElGamal Signature Algorithm

Parameters: *p*, *g*

Alice $SK_A = x_A$ $PK_A = y_A = (g^{xA} \mod p)$

Choose r, such that gcd(r, p-1)=1Compute $R=g^r \mod p$ Compute $S=r^1(m - x_A R) \mod p-1$ (m, R,S)

Verify $g^m = y_A^R R^S \mod p$

 Similar to factoring large number n, for discrete logarithm, the complexity of currently known algorithms is about

 $exp(b^{1/3} \log^{2/3}(b)) b = \log(p)$ (number field sieve)

• b should be at least 1024 bit

• Use strong prime: p-1 has large factors.

- Find a number x that leaves
 - a remainder of 2 when divided by 3,
 - a remainder of 3 when divided by 5,
 - a remainder of 4 when divided by 7.
- If
- $x \equiv 2 \pmod{3}$ $x \equiv 3 \pmod{5}$ $x \equiv 4 \pmod{7}$
- x=?

Chinese Remainder Theorem

- Let $(n_1, n_2, ..., n_k)$ be pairwise relatively prime positive integers. Then the system of congruence
 - $x \equiv a_1 \pmod{n_1}$
 - $-x \equiv a_2 \pmod{n_2}$
 -
 - $-x \equiv a_k \pmod{n_k}$

has a unique solution (modulo $n_1n_2...n_k$)

Solution

 $n = n_1 n_2 \dots n_k, \quad m_i = n/n_i, \quad m_i = m_i^{-1} \pmod{n_i}$ $x = a_1 m_1 m_1' + a_2 m_2 m_2' + \dots + a_k m_k m_k'$

Chinese Reminder Theorem (CRT)

Theorem Let $n_1, n_2, ..., n_k$ be integers s.t. $gcd(n_i, n_j) = 1$ for any $i \neq j$. $x \equiv a_1 \mod n_1$ $x \equiv a_2 \mod n_2$

$$x \equiv a_k \mod n_k$$

There exists a unique solution modulo $n = n_1 n_2 ... n_k$

Proof of CRT

- Consider the function $\chi: Z_n \rightarrow Z_{n1} \times Z_{n2} \times ... \times Z_{nk}$ $\chi(x) = (x \mod n_1, ..., x \mod n_k)$
- We need to prove that χ is a bijection.
- For $1 \le i \le k$, define $m_i = n / n_i$, then $gcd(m_i, n_i)=1$
- For $1 \le i \le k$, define $y_i = m_i^{-1} \mod n_i$
- Define function $\rho(a1,a2,\ldots,ak) = \Sigma \ a_i m_i y_i \ mod \ n,$ this function inverts χ

 $-a_im_iy_i \equiv a_i \pmod{n_i}$

 $-a_im_iy_i \equiv 0 \pmod{n_i}$ where $i \neq j$

An Example Illustrating Proof of CRT

• Example of the mappings:

- $m_1 = 5, y_1 = m_1^{-1} \mod n_1 = 2, 5 \cdot 2 \mod 3 = 1$
- $m_2=3, y_2=m_2^{-1} \mod n_2=2, 3.2 \mod 5 = 1$
- $\begin{array}{ll} & \rho(2,4) & = (2 \cdot 5 \cdot 2 \, + \, 4 \cdot 3 \cdot 2) \ \text{mod} \ 15 \\ & = 44 \ \text{mod} \ 15 = 14 \end{array}$
- $-14 \mod 3 = 2, 14 \mod 5 = 4$

An exhaustive search for all $0 \le x \le p$

•Check only for even x or odd x according to $b^{(p-1)/2} \equiv (a^x)^{(p-1)/2} \equiv (a^{(p-1)/2})^x \equiv (-1)^x \equiv 1 \text{ or } -1 \pmod{p}$, where a is a primitive root

(Ex) p=11, a=2, b=9, since $b^{(p-1)/2} \equiv 9^5 \equiv 1$, then check for even numbers {0,2,4,6,8,10} only to find x=6 such that $2^6 \equiv 9 \pmod{11}$

- Suppose $p-1=2^n$, a is a generator of Z_p^*
- Given *b*=*a*^{*x*} mod *p*, to compute *x*=?
 - Let $x = 2^{n-1}x_{n-1} + \ldots + 2x_1 + x_0$
 - If $b^{2^{n-1}}=1$, then $x_0 = 0$; if $b^{2^{n-1}}=-1$, then $x_0 = 1$.
 - Compute $b_1 = b/a^{x_0}$
 - If $b_1^{2^{n-2}}=1$, then $x_1 = 0$, if $b_1^{2^{n-2}}=-1$, then $x_1 = 1$.
 - Compute $b_2 = b_1/a^{2x_1}$
 - ...
 - If $b_{n-1}=1$, then $x_{n-1}=0$, if $b_{n-1}=0$ then $x_{n-1}=1$

Solve a[×] ≡ b (mod p) by Pohlig-Hellman

Works if p-1 can be factorized into small numbers, i.e.,

- $p-1=q_1q_2...q_r$
- For every factor q|(p-1), do the following:
- write $b_0 = b$, and, $x = x_0 + x_1q + x_2q^2 + \dots + x_{r-1}q^{r-1}$ for $0 \le x_i \le q-1$
- 1. Find $0 \le k \le q-1$ such that $(a^{(p-1)/q})^k \equiv b^{(p-1)/q} \mod p$, then $x_0 \equiv k$, next let $b_1 \equiv b_0 a^{-x0}$
- 2. Find $0 \le k \le q-1$ such that $(a^{(p-1)/q})^k \equiv [b_1]^{(p-1)/q^2}$, then $x_1 \equiv k$, nex let $b_2 \equiv b_1 a^{-x1}$
- 3. Repeat steps 1, 2 until x_{r-1} is found
- 4. Repeat steps 1~3 for all q's, then apply Chinese Remainder Theorem to get the final solution

The correctness of Pohlig-Hellamn 🅭

Let $a^x \equiv b$. For every factor q|(p-1), write $x=x_0 + x_1q + x_2q^2 + \dots + x_{r-1}q^{r-1} = x_0 + wq$. If we could find $0 \le k \le q-1$ such that $(a^{(p-1)/q})^k \equiv b^{(p-1)/q} \mod p$, then $x_0 \equiv k$.

Proof.
$$b^{(p-1)/q} \equiv (a^x)^{\frac{p-1}{q}} \equiv (a^{p-1})^w a^{\frac{x_0(p-1)}{q}}$$
$$\equiv \left(a^{\frac{p-1}{q}}\right)^{x_0} \mod p$$

7×≡12 (mod 41); p=41, a=7, b=12,

- p-1=41-1=40 =2³5
- b₀=12
- For q=2: $b_0 = 12$, $b_1 = 31$, $b_2 = 31$, and x = x₀+2x₁+4x₂ = 1+2.0+4.1 = 5 (mod 8)
- For q=5: b₀=12, b₁=18, and x = x₀ ≡ 3 (mod 5)
 Solving x ≡ 5 (mod 8) and x≡ 3 (mod 5),
 We have x≡13 (mod 40)

Primality Testing

- often we need to find large prime numbers
- traditionally sieve using trial division
 - i.e. divide by all numbers (primes) in turn less than the square root of the number
 - only works for small numbers
- alternatively can use statistical primality tests based on properties of primes
 - for which all primes numbers satisfy property
 - but some composite numbers, called pseudo-primes, also satisfy the property
- can use a slower deterministic primality test

• Any positive odd $n \ge 3$ can be written as

 $n-1 \ge 2^k q$ for q>0 and odd q

Fact 1. For any prime p and any number 0<a<p,

 $a^2 \equiv 1 \mod p$ if and only if $a \equiv 1 \mod p$ or $a \equiv -1 \mod p$ Fact 2. Let $p = 2^k q + 1$ be an odd prime number for odd q, and let 1<a<p-1. Then one of the following two is true.

1. $a^q \equiv 1 \mod p$ 2. $\exists b \in \{a^q, a^{2q}, \dots, a^{2^{k-1}q}\}$: $b \equiv -1 \mod p$ Proof. Fermat's Theorem: $a^{2^k q} = a^{p-1} \equiv 1 \mod p$ Consider $a^q, a^{2q}, \dots, a^{2^{k-1}q}$ either 1 or 2 holds.

- based on Fermat's Theorem: $a^{p-1} = 1 \pmod{p}$
- TEST (*n*):
 - 1. Find integers k, q, k > 0, q odd, so that $(n-1) = 2^k q$

Miller Rabin Algorithm

- **2.** Select a random integer a, 1 < a < n-1
- 3. if $a^q \mod n = 1$ then return ("inconclusive");

4. for
$$j = 0$$
 to $k - 1$ do

5. if
$$(a^{2^{j_q}} \mod n = n-1)$$

then return("inconclusive")

6. return ("composite")

- Prob(inconclusive but p not prime) < ¼ [KNUT98]
 repeat test with different random a
 - Prob(n is prime after *t* tests) = 1-4^{-t} (0.99999 for t=10)

- Public-key cryptosystems:
 - -RSA factorization
 - DH, ElGamal -discrete logarithm
 ECC
- Math
 - Fermat's and Euler's Theorems & ø(n)
 - Group, Fields
 - Primality Testing
 - Chinese Remainder Theorem
 - Discrete Logarithms

- 1. If x=2 (mod 3) x=3 (mod 5) x=4 (mod 7), what is x?
- 2. compute $\phi(24)=\#\{?\}$, and $\phi(n)$ for $n=p_1^{e_1} p_2^{e_2} p_3^{e_3}$
- 3. Prove: in ElGamal Signature Algorithm, the Verification test $g^m = y_a^R R^S \pmod{p}$ is valid.
- 4. ElGamal encryption use a random integer *r* for each message, what will happen if *r* is used twice?

send the solutions to gracehgs@mail.sjtu.edu.cn Deadline: May 19th