Computer Security and Cryptography

CS381

来学嘉
计算机科学与工程系 电院3－423室
3420544013564100825 laix＠sjtu．edu．cn

2015－05

Organization

－Week 1 to week 16 （2015－03 to 2014－06）

- 东中院－3－102
- Monday 3－4节；week 9－16
- Wednesday 3－4节；week 1－16
－lecture 10 ＋exercise 40 ＋random tests 40 ＋other 10
－Ask questions in class－counted as points
－Turn ON your mobile phone（after lecture）
－Slides and papers：
－http：／／202．120．38．185／CS381
－computer－security
－http：／／202．120．38．185／references
－TA：Geshi Huang gracehgs＠mail．sjtu．edu．cn
－Send homework to the TA
Rule：do the homework on your own！

Contents

- introduction -- What is security?
- Cryptography
- Classical ciphers
- Today's ciphers
- Public-key cryptography
- Hash functions and MAC
- Authentication protocols
- Applications
- Digital certificates
- Secure email
- Internet security, e-banking
- Computer and network security
- Access control
- Malware
- Firewall
- Examples: Flame, Router, BitCoin ??

References

－W．Stallings，Cryptography and network security－principles and practice，Prentice Hall．
－W．Stallings，密码学与网络安全：原理与实践（第4版），刘玉珍等译，电子工业出版社， 2006
－Lidong Chen，Guang Gong，Communication and System Security， CRC Press， 2012.
－A．J．Menezes，P．C．van Oorschot and S．A．Vanstone，Handbook of Applied Cryptography．CRC Press，1997，ISBN：0－8493－8523－7， http：／／www．cacr．math．uwaterloo．ca／hac／index．html
－B．Schneier，Applied cryptography．John Wiley \＆Sons，1995，2nd edition．
－裴定一，徐祥，信息安全数学基础，ISBN 978－7－115－15662－4，人民邮电出版社，2007．

contents

- Public-key cryptosystems:
- RSA - factorization
- DH, ElGamal -discrete logarithm
- ECC
- Math
- Fermat's and Euler's Theorems \& ø(n)
- Group, Fields
- Primality Testing
- Chinese Remainder Theorem
- Discrete Logarithms

Group

- a set G, and • : $G \times G \rightarrow G$ be a binary operation, satisfying
- closure: for $a, b \in G, a \cdot b \in G$;
- associativity: for $a, b, c \in G$,

$$
(a \cdot b) \cdot c=a \cdot(b \cdot c) ;
$$

- (identity) There is an element $e \in G$, such that for any $a \in G, \quad e \cdot a=a \cdot e=a$
- (Inverse) For any $a \in G$, there exists an element $b \in G$, such that, $a \cdot b=b \cdot a=e$.
Then (G, \cdot) is called to be a group.
- A group (G, \bullet) is an Abelian group if it also satisfy
- (Commutativity) For any $a, b \in G, \quad a \cdot b=b \cdot a$.

Eample.

- (Z, +), (Q, +), (R, +); ($Z_{m},+$)
- $\left(Z^{*}=Z \backslash\{0\}, \bullet\right),\left(Z_{P}{ }^{*}, \bullet\right)$

Cyclic group

- Order of an element: for $a \in G$, compute $\left\{a, a^{2}, \ldots, a^{m}=1\right\}$, the least positive integer m such that $a^{m}=1$ is called to be the order of a.
- $\left\{1, a, a^{2}, \ldots, a^{m-1}\right\}$ is a cyclic group with order m. a is called the generator of the cyclic group.
- Lemma: if the order of a is m and if $a^{n}=1$, then $m \mid n$.
- Lemma: if the order of a is m, then the order of a^{k} is $m / \operatorname{gcd}(k, m)$.
- Theorem: if the order of group G is n, then for any subgroup of G, the order of subgroup divides n.
- Cyclic subgroups of $\left(Z_{7}{ }^{*}, \bullet\right)$
- $1^{0}=1$
$-2^{0}=1,2^{1}=2,2^{2}=4,2^{3}=1$
$-3^{0}=1,3^{1}=3,3^{2}=2,3^{3}=6,3^{4}=4,3^{5}=5,3^{6}=1$
$-4^{0}=1,4^{1}=4,4^{2}=2,4^{3}=1$
$-5^{0}=1,5^{1}=5,5^{2}=4,5^{3}=6,5^{4}=2,5^{5}=3,5^{6}=1$
$-6^{0}=1,6^{1}=6,6^{2}=1$
$\{1,2,4\}$
\{1,3,2,6,4,5\}
\{1,2,4\}
\{1,5,4,6,2,3\}
\{1,6\}

Table 8.3 Powers of Integers, Modulo 19

a	a^{2}	a^{3}	a^{4}	a^{5}	a^{6}	a^{7}	a^{8}	a^{9}	a^{10}	a^{11}	a^{12}	a^{13}	a^{14}	a^{15}	a^{16}	a^{17}	a^{18}
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	4	8	16	13	7	14	9	18	17	15	11	3	6	12	5	10	1
3	9	8	5	15	7	2	6	18	16	10	11	14	4	12	17	13	1
4	16	7	9	17	11	6	5	1	4	16	7	9	17	11	6	5	1
5	6	11	17	9	7	16	4	1	5	6	11	17	9	7	16	4	1
6	17	7	4	5	11	9	16	1	6	17	7	4	5	11	9	16	1
7	11	1	7	11	1	7	11	1	7	11	1	7	11	1	7	11	1
8	7	18	11	12	1	8	7	18	11	12	1	8	7	18	11	12	1
9	5	7	6	16	11	4	17	1	9	5	7	6	16	11	4	17	1
10	5	12	6	3	11	15	17	18	9	14	7	13	16	8	4	2	1
11	7	1	11	7	1	11	7	1	11	7	1	11	7	1	11	7	1
12	11	18	7	8	1	12	11	18	7	8	1	12	11	18	7	8	1
13	17	12	4	14	11	10	16	18	6	2	7	15	5	8	9	3	1
14	6	8	17	10	7	3	4	18	5	13	11	2	9	12	16	15	1
15	16	12	9	2	11	13	5	18	4	3	7	10	17	8	6	14	1
16	9	11	5	4	7	17	6	1	16	9	11	5	4	7	17	6	1
17	4	11	16	6	7	5	9	1	17	4	11	16	6	7	5	9	1
18	1	18	1	18	1	18	1	18	1	18	1	18	1	18	1	18	1

Field

- Let F be a set, and • and + are binary operations defined over F, satisfying
- $(F,+)$ is an Abelian additive group with identity 0 ;
- $(F \backslash\{0\}, \bullet)$ is a multiplicative group, with identity 1 ;
- Distributive law: For any $a, b, c \in F: a \cdot(b+c)=a \cdot b+a \cdot c$
$(F,+, \bullet)$ is called to be a field.
Example: let p be a prime, then $\left(Z_{p},+, \bullet\right)$ is a field, called Galois
Field, denoted as $G F(P)=F_{p}$.

Discrete logarithm

- For any $0<x<p$ in $G F(p)$.
- Given x and g, compute $y \equiv g^{x}(\bmod p)$ is called modular exponentiation,
- Given g and y, to find x such that $y \equiv g^{x}(\bmod p)$ is called discrete logarithm, written as $x=\log _{g} y(\bmod p)$
- exponentiation is relatively easy, with computation complexity $\mathrm{O}\left(\log _{2}(p)\right)$ 。
- finding discrete logarithms is generally a hard problem

Diffie-Hellman Key Agreement

W.Diffie and M.E.Hellman, "New Directions in Cryptography", IEEE Transaction on Information Theory, V.IT-22.No.6, Nov 1976, PP.644-654

Parameters: p, g

Alice

Choose a			
Compute $g^{a} \bmod p$	$g^{a} \bmod p$	\quad	Choose b
:---			
Compute $g^{b} \bmod p$			

Compute $g^{a b} \bmod p$
g^{ab} is the secrete key shared by Alice and Bob

ElGamal encryption algorithm

- Set up: $\operatorname{GF}(p)$, and g the primitive element.
- Users' key generation:
- user U randomly chooses $x \in \mathrm{GF}(p)^{*}$ as his private key.
- Compute $y \equiv g^{x}(\bmod p)$ as his public key.
- Encryption: suppose that Alice wants to send Bob a message $m \in \operatorname{GF}(p)$. She uses Bob's public key y_{b},
- Alice randomly chooses an integer r, and compute $R=g^{r}$
- Alice computes $S=m \bullet y_{b}{ }^{r}(\bmod p)$;
- Alice sends (R, S) to Bob
- Decryption: Bob uses his own private key to decrypt m from $(R, S): m=S / R^{x_{b}}=\left(m \cdot y_{b}^{r}\right) /\left(g^{r}\right)^{x_{b}}$

ElGamal encryption algorithm

Alice sends Bob a message $m \in G F(p)$. Using Bob's public key

Parameters: p, g

Alice $\mathrm{SK}_{\mathrm{A}}=\left(x_{A}\right)$

$$
\operatorname{PK}_{A}=\left(y_{A}\right)=\left(g^{X A} \bmod p\right)
$$

Get PK_{B},
Compute $R=g^{r} \bmod p$
Compute $S=m y_{B}{ }^{r} \bmod p$

Bob $\mathrm{SK}_{\mathrm{B}}=\left(x_{\mathrm{B}}\right)$
$\operatorname{PK}_{B}=\left(y_{B}\right)=\left(g^{x B} \bmod p\right)$

$$
\begin{equation*}
\boldsymbol{m}=S / \boldsymbol{R}^{x_{b}}=\left(m \cdot y_{b}^{r}\right) /\left(g^{r}\right)^{x_{b}} \tag{R,S}
\end{equation*}
$$

ElGamal Signature Algorithm

- Parameters are chosen as in encryption algorithm.
- Alice's private key is x_{a}, and public key is $y_{a}=g^{x_{a}}$
- Bob's private key is x_{b}, and public key is $y_{b}=g^{x_{b}}$
- Signing
- Alice randomly chooses an integer r such that $\operatorname{gcd}(r, p-1)=1$, and gets $R=g^{r}$
- Alice uses her own private key x_{a} to compute

$$
S=r^{-1}\left(m-x_{a} R\right)(\bmod p-1)
$$

- Alice sends (m, R, S) to Bob
- Verification
- Bob verifies $g^{m}=y_{a}{ }^{R} R^{S}(\bmod p)$

ElGamal Signature Algorithm

Parameters: p,g

Alice $\mathrm{SK}_{\mathrm{A}}=x_{A}$
$\mathrm{PK}_{\mathrm{A}}=y_{A}=\left(\mathrm{g}^{X A} \bmod \mathrm{p}\right)$

Bob $\mathrm{SK}_{\mathrm{B}}=x_{B}$
$\mathrm{PK}_{\mathrm{B}}=y_{\mathrm{B}}=\left(\mathrm{g}^{\times B} \bmod \mathrm{p}\right)$

Choose r, such that $\operatorname{gcd}(r, p-1)=1$
Compute $R=g^{r} \bmod p$
Compute $S=r^{-1}\left(m-x_{A} R\right) \bmod p-1$

Verify $g^{m}=y_{A}{ }^{R} R^{S} \bmod p$

Complexity of Dlog

- Similar to factoring large number n , for discrete logarithm, the complexity of currently known algorithms is about

$$
\exp \left(b^{1 / 3} \log ^{2 / 3}(b)\right) \quad b=\log (p) \quad \text { (number field sieve) }
$$

- b should be at least 1024 bit
- Use strong prime: p-1 has large factors.

Chinese Remainder Theorem

- Find a number x that leaves
- a remainder of 2 when divided by 3,
- a remainder of 3 when divided by 5 ,
- a remainder of 4 when divided by 7 .
- If

$$
\begin{aligned}
& x \equiv 2(\bmod 3) \\
& x \equiv 3(\bmod 5) \\
& x \equiv 4(\bmod 7)
\end{aligned}
$$

- $\mathrm{x}=$?

Chinese Remainder Theorem

- Let $\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ be pairwise relatively prime positive integers. Then the system of congruence
$-x \equiv a_{1}\left(\bmod n_{1}\right)$
$-x \equiv a_{2}\left(\bmod n_{2}\right)$
-
$-x \equiv a_{k}\left(\bmod n_{k}\right)$
has a unique solution (modulo $n_{1} n_{2} \ldots n_{k}$)
- Solution

$$
\begin{aligned}
& n=n_{1} n_{2} \ldots n_{k}, \quad m_{i}=n / n_{i}, m_{i}^{\prime}=m_{i}^{-1}\left(\bmod n_{i}\right) \\
& x=a_{1} m_{1} m_{1}^{\prime}+a_{2} m_{2} m_{2}^{\prime}+\ldots+a_{k} m_{k} m_{k}^{\prime}
\end{aligned}
$$

Chinese Reminder Theorem (CRT)

Theorem
Let $\mathrm{n}_{1}, \mathrm{n}_{2},,,, \mathrm{n}_{\mathrm{k}}$ be integers s.t. $\operatorname{gcd}\left(\mathrm{n}_{\mathrm{i}}, \mathrm{n}_{\mathrm{j}}\right)=1$ for any $\mathrm{i} \neq \mathrm{j}$.

$$
\begin{aligned}
& x \equiv a_{1} \bmod n_{1} \\
& x \equiv a_{2} \bmod n_{2} \\
& \cdots \\
& x \equiv a_{k} \bmod n_{k}
\end{aligned}
$$

There exists a unique solution modulo

$$
\mathrm{n}=\mathrm{n}_{1} \mathrm{n}_{2} \ldots \mathrm{n}_{\mathrm{k}}
$$

Proof of CRT

- Consider the function $\chi: \mathrm{Z}_{\mathrm{n}} \rightarrow \mathrm{Z}_{\mathrm{n} 1} \times \mathrm{Z}_{\mathrm{n} 2} \times \ldots \times \mathrm{Z}_{\mathrm{nk}}$

$$
\chi(x)=\left(x \bmod n_{1}, \ldots, x \bmod n_{k}\right)
$$

- We need to prove that χ is a bijection.
- For $1 \leq i \leq k$, define $m_{i}=n / n_{i}$, then $\operatorname{gcd}\left(m_{i}, n_{i}\right)=1$
- For $1 \leq i \leq k$, define $y_{i}=m_{i}^{-1} \bmod n_{i}$
- Define function $\rho(a 1, a 2, \ldots, a k)=\sum a_{i} m_{i} y_{i} \bmod n$, this function inverts χ
$-a_{i} m_{i} y_{i} \equiv a_{i}\left(\bmod n_{i}\right)$
$-a_{i} m_{i} y_{i} \equiv 0\left(\bmod n_{j}\right)$ where $i \neq j$

An Example Illustrating Proof of CRT

- Example of the mappings:

$$
\begin{aligned}
& -n_{1}=3, n_{2}=5, n=15 \\
& -m_{1}=5, y_{1}=m_{1}^{-1} \bmod n_{1}=2, \quad 5 \cdot 2 \bmod 3=1 \\
& -m_{2}=3, y_{2}=m_{2}^{-1} \bmod _{2}=2, \quad 3 \cdot 2 \bmod 5=1 \\
& -\rho(2,4) \quad=(2 \cdot 5 \cdot 2+4 \cdot 3 \cdot 2) \bmod 15 \\
& \quad=44 \bmod 15=14 \\
& -14 \bmod 3=2,14 \bmod 5=4
\end{aligned}
$$

Solve $a^{x} \equiv b(\bmod p)$

An exhaustive search for all $0 \leq x<p$
-Check only for even x or odd x according to $b^{(p-1) / 2} \equiv$ $\left(a^{x}\right)^{(p-1) / 2} \equiv\left(a^{(p-1) / 2}\right)^{x} \equiv(-1)^{x} \equiv 1$ or $-1(\bmod p)$, where a is a primitive root
(Ex) $p=11, a=2, b=9$, since $b^{(p-1) / 2} \equiv 9^{5} \equiv 1$, then check for even numbers $\{0,2,4,6,8,10\}$ only to find $\mathrm{x}=6$ such that $2^{6} \equiv 9(\bmod 11)$

Attack when p-1 consists of small primes

- Suppose $p-1=2^{n}$, a is a generator of $Z_{p}{ }^{*}$
- Given $b=a^{x} \bmod p$, to compute $x=$?
- Let $x=2^{n-1} x_{n-1}+\ldots+2 x_{1}+x_{0}$
- If $b^{2^{n-1}}=1$, then $x_{0}=0$; if $b^{2^{n-1}}=-1$, then $x_{0}=1$.
- Compute $b_{1}=b / a^{x_{0}}$
- If $b_{1}{ }^{2 n-2}=1$, then $x_{1}=0$, if $b_{1}{ }^{2 n-2}=-1$, then $x_{1}=1$.
- Compute $b_{2}=b_{1} / a^{2 x_{1}}$
- If $b_{n-1}=1$, then $x_{n-1}=0$, if $b_{n-1}=0$ then $x_{n-1}=1$

Solve $\mathbf{a}^{x} \equiv \mathrm{~b}(\bmod \mathrm{p})$ by Pohlig-Hellman

Works if $p-1$ can be factorized into small numbers, i.e.,
$p-1=q_{1} q_{2} \ldots q_{r}$
For every factor $q \mid(p-1)$, do the following:
write $b_{0}=b$,and, $x=x_{0}+x_{1} q+x_{2} q^{2}+\cdots+x_{r-1} q^{r-1}$ for $0 \leq x_{i} \leq q-1$

1. Find $0 \leq k \leq q-1$ such that $\left(a^{(p-1) / q}\right)^{k}=b^{(p-1) / q} \bmod p$,
then $\mathrm{x}_{0} \equiv \mathrm{k}$, next let $\mathrm{b}_{1} \equiv \mathrm{~b}_{0} \mathrm{a}^{-\mathrm{x} 0}$
2. Find $0 \leq k \leq q-1$ such that $\left(a^{(p-1) / q}\right)^{k} \equiv\left[b_{1}\right]^{(p-1) / q^{\wedge} 2}$, then $x_{1} \equiv k$, nex let $b_{2}=b_{1} a^{-\times 1}$
3. Repeat steps 1,2 until x_{r-1} is found
4. Repeat steps 1~3 for all q's, then apply Chinese Remainder Theorem to get the final solution

The correctness of Pohlig-Hellamn

Let $\mathrm{a}^{\mathrm{x}} \equiv \mathrm{b}$. For every factor $\mathrm{q} \mid(\mathrm{p}-1)$,
write $x=x_{0}+x_{1} q+x_{2} q^{2}+\cdots+x_{r-1} q^{r-1}=x_{0}+w q$.
If we could find $0 \leq k \leq q-1$ such that $\left(a^{(p-1) / q}\right)^{k} \equiv b^{(p-1) / q} \bmod p$, then $\mathrm{x}_{0} \equiv \mathrm{k}$.
Proof. $b^{(p-1) / q} \equiv\left(a^{x}\right)^{\frac{p-1}{q}} \equiv\left(a^{p-1}\right)^{w} a^{\frac{x_{0}(p-1)}{q}}$

$$
\equiv\left(a^{\frac{p-1}{q}}\right)^{x_{0}} \bmod p
$$

$7^{x} \equiv 12(\bmod 41) ; ~ p=41, a=7$, $\mathrm{b}=12$,

- $\mathrm{p}-1=41-1=40=2^{3} 5$
- $\mathrm{b}_{0}=12$
- For $q=2: b_{0}=12, b_{1}=31, b_{2}=31$, and

$$
x=x_{0}+2 x_{1}+4 x_{2} \equiv 1+2 \cdot 0+4 \cdot 1 \equiv 5(\bmod 8)
$$

- For $q=5: b_{0}=12, b_{1}=18$, and $x=x_{0} \equiv 3(\bmod 5)$
Solving $x \equiv 5(\bmod 8)$ and $x \equiv 3(\bmod 5)$,
We have $x \equiv 13(\bmod 40)$

Primality Testing

- often we need to find large prime numbers
- traditionally sieve using trial division
- i.e. divide by all numbers (primes) in turn less than the square root of the number
- only works for small numbers
- alternatively can use statistical primality tests based on properties of primes
- for which all primes numbers satisfy property
- but some composite numbers, called pseudo-primes, also satisfy the property
- can use a slower deterministic primality test

Some facts about primes

- Any positive odd $\mathrm{n} \geq 3$ can be written as

$$
\mathrm{n}-1 \geq 2^{k} q \text { for } \mathrm{q}>0 \text { and odd } q
$$

Fact 1 . For any prime p and any number $0<a<p$,
$a^{2} \equiv 1 \bmod p$ if and only if $a \equiv 1 \bmod p$ or $a \equiv-1 \bmod p$
Fact 2. Let $p=2^{k} q+1$ be an odd prime number for odd q, and let $1<a<p-1$. Then one of the following two is true.

1. $a^{q} \equiv 1 \bmod p \quad$ 2. $\exists \mathrm{b} \in\left\{a^{q}, a^{2 q}, \cdots, a^{2^{k-1} q}\right\}: \mathrm{b} \equiv-1 \bmod p$

Proof. Fermat's Theorem: $a^{2^{k} q}=a^{p-1} \equiv 1 \bmod p$
Consider $a^{q}, a^{2 q}, \cdots, a^{2^{k-1} q}$ either 1 or 2 holds.

Miller Rabin Algorithm

- based on Fermat's Theorem: $\mathrm{a}^{\mathrm{p}-1}=1(\bmod p)$
- TEST (n):

1. Find integers $k, q, k>0, q$ odd, so that $(n-1)=2^{k} q$
2. Select a random integer $a, 1<a<n-1$
3. if $a^{q} \bmod n=1$ then return ("inconclusive");
4. for $j=0$ to $k-1$ do
5. if $\left(a^{2^{j} q} \bmod n=n-1\right)$
then return("inconclusive")
6. return ("composite")

- Prob(inconclusive but p not prime) $<1 / 4$ [KNUT98]
- repeat test with different random a
$-\operatorname{Prob}(\mathrm{n}$ is prime after t tests $)=1-4^{-t}(0.99999$ for $\mathrm{t}=10)$

Summary

- Public-key cryptosystems:
-RSA - factorization
- DH, ElGamal -discrete logarithm
- ECC
- Math
- Fermat's and Euler's Theorems \& ø(n)
- Group, Fields
- Primality Testing
- Chinese Remainder Theorem
- Discrete Logarithms

Exercise 9 - PKC

1. If $x=2(\bmod 3) x=3(\bmod 5) x=4(\bmod 7)$, what is x ?
2. compute $\phi(24)=\#\{?\}$, and $\phi(n)$ for $n=p_{1}{ }^{e 1} p_{2}{ }^{e 2} p_{3}{ }^{e 3}$
3. Prove: in ElGamal Signature Algorithm, the Verification test $g^{m}=y_{a}{ }^{R} R^{S}(\bmod p)$ is valid.
4. ElGamal encryption use a random integer r for each message, what will happen if r is used twice?
send the solutions to gracehgs@mail.sjtu.edu.cn
Deadline: May 19 ${ }^{\text {th }}$
