
Computer Security

and Cryptography

CS381

来学嘉

计算机科学与工程系 电院3-423室

34205440 1356 4100825 laix@sjtu.edu.cn

2015-05

Organization

• Week 1 to week 16 (2015-03 to 2014-06)

• 东中院-3-102

• Monday 3-4节; week 9-16

• Wednesday 3-4节; week 1-16

• lecture 10 + exercise 40 + random tests 40 + other 10

• Ask questions in class – counted as points

• Turn ON your mobile phone (after lecture)

• Slides and papers:

– http://202.120.38.185/CS381

• computer-security

– http://202.120.38.185/references

• TA: Geshi Huang gracehgs@mail.sjtu.edu.cn

• Send homework to the TA

Rule: do the homework on your own!

2

Contents

• Introduction -- What is security?

• Cryptography

– Classical ciphers

– Today’s ciphers

– Public-key cryptography

– Hash functions and MAC

– Authentication protocols

• Applications

– Digital certificates

– Secure email

– Internet security, e-banking

• Computer and network security

– Access control

– Malware

– Firewall

 3

Content

• Hash function – usage and basic properties

• Iterated hash function – Relationship
between Hash function and its round
(compress) function

• Real compressing functions

– Using block cipher

– Dedicated hash functions, MD5,SHA1

• Security and attacks

• SHA-3

• MAC

4

5

References
• Bart Preneel, The State of Cryptographic Hash Functions,

http://www.cosic.esat.kuleuven.ac.be/publications/

• G. Yuval, “How to swindle Rabin," Cryptologia, Vol. 3, 1979, pp. 187-189

• Ralph Merkle. One way Hash functions and DES. In Gilles Brassard, editor, Advances in

Cryptology: CRYPTO 89, LNCS 435. Springer-Verlag. 1989: 428–446.

• Ivan Damgard. A design principle for Hash functions. In Gilles Brassard, editor, Advances in

Cryptology: CRYPTO 89, LNCS 435. Springer-Verlag. 1989:416~427.

• ISO/IEC 10118, Information technology - Security techniques - Hash-functions,

– Part 1: General",

– Part 2: Hash-functions using an n-bit block cipher algorithm,"

– Part 3: Dedicated hash-functions,"

– Part 4: Hash-functions using modular arithmetic,“

• M. Naor, M. Yung, “Universal one-way hash functions and their cryptographic applications," Proc.

21st ACM Symposium on the Theory of Computing, 1990, pp. 387-394.

• X. Lai, J.L. Massey, “Hash functions based on block ciphers," Advances in Cryptology,

Proceedings Eurocrypt'92, LNCS 658, R.A. Rueppel, Ed., Springer-Verlag, 1993, pp. 55-70

• L.R. Knudsen, X. Lai, B. Preneel, “Attacks on fast double block length hash functions," Journal of

Cryptology, Vol. 11, No. 1, Winter 1998, pp. 59-72.

 5

References

• Joux, “Multicollisions in Iterated Hash Functions. Applications to Cascaded Constructions,”

Crypto 2004 Proceedings, Springer-Verlag, 2004.

• John Kelsey and Bruce Schneier Second Preimages on n-bit Hash Functions for Much Less than

2n Work, Eurocrypt 2005,

• Ronald Rivest. The MD4 Message Digest Algorithm. RFC1320, http://rfc.net/rfc1320.html. April

1992.

• Ronald Rivest. The MD5 Message Digest Algorithm. RFC1321, http://rfc.net/rfc1321.html. April

1992.

• Hans Dobbertin, Antoon Bosselaers, and Bart Preneel. RIPEMD-160: A Strengthened Version of

RIPEMD. In Dieter Gollmann, editor, Fast Software Encryption, Cambridge, UK, Proceedings,

LNCS-1039. Springer.1996: 71~82.

• NIST. Secure Hash standard. Federal Information Processing Standard. FIPS-180-1. April 1995

• Xiaoyun Wang, Dengguo Feng, Xuejia Lai, and Hongbo Yu. Collisions for Hash Functions MD4,

MD5, HAVAL-128 and RIPEMD. Cryptology ePrint Archive, Report 2004/199, 2004.

http://eprint.iacr.org/2004/199.pdf

• Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and Xiuyuan Yu. Crypt-analysis of the

Hash Functions MD4 and RIPEMD, Advances in Cryptology – EUROCRYPT 2005, LNCS-3494.

Springer.2005: 1~18..

• NIST Selects Winner of Secure Hash Algorithm (SHA-3) Competition". NIST. 2012-10-02.

• G Bertoni,et al, Sponge functions, ECRYPT hash workshop, 2007

6

One-way functions

• Oneway function f: X ->Y, given x, easy to compute f(x); but

for given y in f(X), it is hard to find x, s.t., f(x)=y.

• Prob[f(A(f(x))=f(x))] < 1/p(n) (TM definition, existence unknown)

• Example: hash function, discrete logarithm;

• Keyed function f(X,Z)=Y, for known key z, it is easy to

compute f(.,z)

– Block cipher

• Keyed oneway function: f(X,Z)=Y, for known key z, it is easy

to compute f(.,z) but for given y, it is hard to x,z, s.t., f(x,z)=y.

– MAC function: keyed hash h(z,X), block cipher CBC

• Trapdoor oneway function fT(x): easy to compute and hard to

invert, but with additional knowledge T, it is easy to invert.

– Public-key cipher; RSA: y=xe mod N, T: N=p*q

7

8

Hash function and applications

Definition. A hash function is an efficiently computable and publicly
known function that maps the set of all arbitrarily long binary
sequences (message) to the set of a binary sequence (hash
code/digest) of some fixed length

Applications

• Modification Detection Code MDC

M →Hash→ H

M’→Hash→ H’ = H

• Digital signatures

M → Hash → H → S(H), S(H) is the signature of message M

M’→ Hash→ H’ = H, if yes, S(H) is also a valid signature of M’

attack: for any M with signature S(H), find another M’ s.t.
Hash(M)=Hash(M’).

Requirement: one-way and collision-free

☆

Random oracle and hash function

• A random oracle (RO) is an “idealized function” that on any input (query) it
answers (produces as output) a random string in a consistent manner:

– If x is “new”, then the answer y is a uniform random variable;

– If x has been asked before, then the answer y is remain same.

• RO represents a random function over which an adversary has no control

ROM (random oracle model): a framework for provable security, in which both the
protocol designer and the adversary can have access to ROs.

• In ROM, security proof is easier than in standard model (without RO).

• In a system that is proved secure in ROM, we replace the RO with a hash
function, and hope that security remains.

• This approach is widely used.

• Limitations: RO can not be realized by any efficient algorithm (we can only
assume that a hash function is a RO)

There exists counterexample crypto-systems that are secure in ROM but
breakable when RO is replaced by any hash function.

10

Modification Detection

• Modification Detection Code MDC

M →Hash→ H

M’→Hash→ H’ ≟ H

• To provide integrity:

– Store H=Hash(M) securely. Check H’=Hash(M’) ≟ H

– Example. Simple protection of web-site:

• compute hash code H, backup the site.

• Check hash code H’ of website regularly, if H’H, replace the website

with the backup copy.

• Attack: to find a M’ M such that Hash(M’)=Hash(M).

• Requirement: second preimage resistant (one-wayness)

11

Digital signatures

• Digital signatures

To sign a message M, first hash message M: H=Hash(M),
then apply the signature function on H: Sx(H) is the (user
x’s) signature of message M.

Reason:

Performance: Only need sign a short hash-code instead of a long
message.

Security: Signature needs redundancy for security. Simple
redundancy scheme appears not secure (example: ISO 9796-1).
Signature scheme with “provable security” all use hash.

• Collision attack: find M’ M, but H’=H; then signature of M is the
same as the signature of M’. In the real attack, sign on message M,
but forge signature on M’, i.e., (M’, Sx(H’)=Sx(H))

• Requirement: collision-free

12

Security of hash function

• Second preimage resistance (target collision resistance)

– Given, M and H=Hash(M), it is infeasible to find M’ ≠M,
Hash(M’)=Hash(M).

• Collision resistance (collision resistance)

– It is infeasible to find distinct M’, M, Hash(M’)=Hash(M).

• Second pre-image and collision always exist! The hope is to make it
computationally infeasible

• Note: collision resistance implies second preimage resistance.

• If hash code length is m-bit, then:

– To find second pre-image needs at most 2m computations of Hash

– To find collision needs at most 2m/2 computations of Hash

☆

13

Birthday paradox

• 23 people in a room, it is likely that there exists at least one
collision (two or more persons are of the same birthday)

Theorem 1. Randomly chose N1/2 elements from a set
containing N elements, then

p=probability(2 or more selections are the same) ≥ 1/2

Proof. Randomly chose m elements from a set containing N
elements, the probability m elements are all different is

N

mN

N

N

N

N))1((
....

)2()1(
≈ e -m(m-1)/2N

e=2.71828

P=

For m= 1.2*N1/2, p =1-P ≈ 1- e-1.4/2 = 0.5

☆

14

Iterated Hash function

h h h

M1 M2 Mn

H1 H2 Hn-1
H0

message

H ...

compressing (round) function h: {0,1}m × {0,1}l → {0,1}m

initial value H0 (m-bit)

message M=(M1,...Mn), Mi are l-bit blocks

Hash code H=Hash(H0,M)

Hi = h(Hi-1 ,Mi) i=1,2,..n (chaining value, an m-bit block)

H=Hn

compress function

☆

15

Attacks

Target attack (2nd pre-image attack):

Given H0 and M, find M´≠ M, but Hash(H0,M) = Hash(H0, M´)

Free-start target attack (2nd pre-image attack with arbitrary IV):

 Given (H0 ,M), find (H0´,M´)≠ (H0,M), s.t.

Hash(H0,M) = Hash(H0´ ,M´)

Chosen-message target attack: For given H0, specify a set C,

 such that for each M in C, there is an M´≠M, s.t.

 Hash(H0,M) = Hash(H0, M´)

Collision attack: Given H0, find M and M´≠M, s.t.

 Hash(H0,M) = Hash(H0, M´)

Semi free-start collision attack: Find H0, M, M´≠ M, s.t.

 Hash(H0,M) = Hash(H0, M´)

Free-start collision attack: Find (H0 ,M) and

(H0´,M´) ≠ (H0,M), but Hash(H0,M) = Hash(H0´ M´)

• Target attack → collision attack

• Secure Hash against free-start attacks is also secure against ´usual´
attacks

16

Why so many attacks? – MD5

• Boer & Bosselaers [93]: free-start collision (pseudo
collision: same message, different IV)

 Free-start collision attack: Find (H0 ,M) and

(H0´,M´) ≠ (H0,M), but Hash(H0,M) = Hash(H0´ M´)

• Dobbertin [96]: semi free-start collisions (different
message, chosen IV)

 Semi free-start collision attack: Find H0, M, M´≠ M, but

 Hash(H0,M) = Hash(H0, M´)

• Wang et.al [2004]:

 Collision attack: Given H0, find M and M´≠M, but

 Hash(H0,M) = Hash(H0, M´)

17

Complexity of attacks on Hash

• Brute-force target attacks require about 2m

computations of h

• Brute-force collision attacks require about 2m/2

computations of h

• Complexity : CFS-target ≤ Ctarget ≤ 2m

• CFS-collision ≤ Csemi FS-collision ≤ Ccollision ≤ 2m/2

• An attack on h implies an attack on Hash of same

type

– The converse is not true, Hash (‘chain’) can be

weaker than h (‘link’)

18

Attacks on Hash

Trivial free-start attack

Hash(H0,M1,M2)=Hash(H1,M2)

Trivial semi free-start attack [Miyaguchi et al 90]

 if h has a fixed-point h(H,M)=H, then

H=Hash(H,M)=Hash(H,M,M)=Hash(H,M,M,M)=…

Long-message target attack [Winternitz 84]:

If the given message has n blocks,then

Ctarget(Hash) ≤ 2×2m/n for n ≤ 2m/2

Ctarget(Hash) ≤ 2×2m/2 for n> 2m/2,

19

Long message attack

Long-message target attack [Winternitz 84]:

Ctarget(Hash) ≤ 2×2m/n for n ≤ 2m/2

Ctarget(Hash) ≤ 2×2m/2 for n> 2m/2,

For 2m/n random M1
’, compute H1=h(H0, M1

’)

Pr[some H1
’ = some Hi]  0.63, for such H1

’ and Hi

Hash(H0,M1
’,Mi+1,…Mn)= Hash(H0,M1,…,Mi,Mi+1,…Mn)

h h h

M1 M2 Mn

H1
H2 Hn-1

H0 H ...

h

M1
’

H1
’ in {Hi}? H0

2m/n random

20

MD-strengthening

• Taking advantage that M’ can have different
length from M, one can break Hash without
breaking h.

• Merkle-Damgaard strengthening:

 Let the last block Mn be the length of the actual
message in bits.

• Th.2 Against free-start collision attack, HashMD is
as secure as h [Merkle C89, Damgaard C89,
Naor-Yung 89]

☆

21

Free-start Collision attack:

• Free-start collision attack on HashMD implies free-start

collision on h. (inverse is obvious)

• Proof: exists i,j: Hi  H’i, Hi+1 = H’j+1

• Collision attack on HashMD implies free-start collision on

h. (inverse is unknown)

h h h

M1 M2 ML1

H2 Hn-1
H0

...

h h h

N1 N2 NL2

H‘2 H‘n-1
H‘0

H

...

22

Target attack when h is not one-way

 (meet-in-the-middle target attack by working backwards)

• Th.3 Ctarget(HashMD) ≤ 2m/2 CFS-target(h)1/2

– If obtaining random inverse of h needs 2s computations, then

target attack on HashMD(.,.) needs at most 2(m+s)/2 [Lai-Massey 92]

Attack: given HashMD(H0,M1,M2,M3,..), i.e, given H2, compute

 forwards 2(m+s)/2 values of H1
’ , backwards 2(m-s)/2 values of G1

Pr[some H’1 = some G1]=1-[(1-2-m)(m-s)/2](m+s)/2=1-(1-2-m)m=0.63

 then, for such M1’,M2’,

HashMD(H0,M1’,M2’,M3,..)=HashMD(H0,M1,M2,M3,..)

h

M1‘

H1‘ H0

2(m+s)/2

h

M2‘

H2 G1

2(m-s)/2

23

Meet-in-the-middle

• Randomly choose A={x1,…xX}, B={y1,…yY} from

a set S with N elements.

• Probability that some xi= some yj is 1- (1-Y/N)X

Pr(xi  yj)

=Pr(x1 {yj})p(x2 {yj})…p(xX {yj}) =((N-Y)/N)X=(1-Y/N)X

Theorem. A,BS. if |A| |B|  |S|, then

P(AB )  1- e-1=0.63 e=2.71828

This fact has been used in many new attacks on ciphers and hash functions

☆

24

The issue with MD construction

• One collision(2nd-preimage) implies arbitrarily many
collision(2nd-preimage)

h

h

h

M1

M“

LM

Hn-1
H0

...

h

h

h

N1

M‘

LM

H‘

Hn-1
H0

H

...
...

• The impact:

– “random” collision  “useful/harmful” collision

– Provable security in Random Oracle model may not hold

when replace RO with Hash.

25

Document collision with MD5

h h

h

(if X show M1, else show M2) M2

X
Hi H0

... h h

h M1

Y

H‘

H ...

• Fixed H0, select prefix message, from the resulting Hi, find

colliding messages X, Y; then attach (M1,M2).

– (instruction,X,M1,M2)

– (instruction,Y,M1,M2)

– Have same hash code (signature)
• Stefan Lucks and Magnus Daum (Eurocrypt’05 Rump Session)

26

HashMD - compress

• Free-start collision attacks: HashMD is as secure as h

• Collision attack: collision of HashMD implies free-start collision of
h. (inverse is unknown)

• Free-start target attack on h implies Target attack on HashMD

• Target attack: HashMD cannot achieve ideal security (C<2m)

• Goal: find secure h against free-start collision attack (target
attack is harder than collision)

• open: how to design a hash function that is secure against
target attack and without the undesirable properties?

– Prefix-free, DME, chop, ROX,…, (next standard?)

☆

27

Compress functions

• Design a cryptographic hash function reduces to

finding a oneway compressing function from

{0,1}m+l to {0,1}m, where

– The output (hash-code) size m is for security

(at least 128 bits?)

– The extra input (message) size l is for

efficiency (l=m,2m,3m,4m,…)

• The current construction – iteration + MD

strengthening– has some drawback need to be

addressed

Sponge Construction

• (p0,…pi) input (message)

• (z0,z1,..) output (hash code)

• f can be any transformation (permutation)

Exercise

1. What are the differences between collision attack and target attack?

2. There are m students in a room. What is the probability that

 there are exactly 3 of them have the same birthday?

Note: give the solution as a function of m (approximation is not needed).

1. For double DES Ek2(Ek1M)=C, using the birthday argument, by meet-

in-the-middle, one can

– Compute Ek1(M)=S for 232 choices of k1

– Compute Dk2(C)=T for 232 choices of k2

– because |{S}| |{T}|  264 , we find k1,k2, s.t Ek2(Ek1M)=C

– i.e. the complexity of break double DES is about 232, not 256.

• Is this correct, and why?

• Deadline: June 2

• Format: Subject: CS381-name-EX.# to gracehgs@mail.sjtu.edu.cn

