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Organization 

• Week 1 to week 16  (2015-03  to 2014-06) 

• 东中院-3-102 

• Monday 3-4节; week 9-16 

• Wednesday 3-4节; week 1-16 

• lecture 10 + exercise 40 + random tests 40 + other 10   

• Ask questions in class – counted as points 

• Turn ON your mobile phone  (after lecture) 

• Slides and papers: 

– http://202.120.38.185/CS381 

• computer-security 

– http://202.120.38.185/references 

• TA: Geshi Huang  gracehgs@mail.sjtu.edu.cn 

• Send homework to the TA 

Rule: do the homework on your own! 
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Content 

• Hash function – usage and  basic properties 

• Iterated hash function – Relationship 
between Hash function and its round 
(compress) function 

• Real compressing functions  

– Using block cipher 

– Dedicated hash functions, MD5,SHA1 

• Security and attacks 

• SHA-3 

• MAC 
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One-way functions 

• Oneway function f: X ->Y, given x, easy to compute f(x); but 

for given y in f(X), it is hard to find x, s.t., f(x)=y. 

• Prob[ f(A(f(x))=f(x)) ] < 1/p(n)   (TM definition, existence unknown) 

• Example: hash function, discrete logarithm; 

• Keyed function f(X,Z)=Y, for known key z, it is easy to 

compute f(.,z)  

– Block cipher 

• Keyed oneway function: f(X,Z)=Y, for known key z, it is easy 

to compute f(.,z) but for given y, it is hard to x,z, s.t., f(x,z)=y. 

– MAC function: keyed hash h(z,X), block cipher CBC    

• Trapdoor oneway function fT(x): easy to compute and hard to 

invert, but with additional knowledge T, it is easy to invert. 

– Public-key cipher; RSA: y=xe mod N, T: N=p*q 

 

 

 

 

 

7 



8 

Hash function and applications 

Definition. A hash function is an efficiently computable and publicly 
known function that maps the set of all arbitrarily long binary 
sequences (message) to the set of a binary sequence (hash 
code/digest) of some fixed length 

Applications 

• Modification Detection Code MDC 

M →Hash→ H 

M’→Hash→ H’ = H 

• Digital signatures 

M → Hash → H → S(H), S(H) is the signature of message M 

M’→ Hash→ H’ = H, if yes, S(H) is also a valid signature of M’ 

attack: for any M with signature S(H), find another M’ s.t. 
Hash(M)=Hash(M’). 

Requirement: one-way and collision-free 

 

☆ 



Random oracle and hash function 

• A random oracle (RO) is an “idealized function” that on any input (query) it 
answers (produces as output) a random string in a consistent manner: 

– If x is “new”, then the answer y is a uniform random variable; 

– If x has been asked before, then the answer y is remain same. 

• RO represents a random function over which an adversary has no control  

ROM (random oracle model): a framework for provable security, in which both the 
protocol designer and the adversary can have access to ROs. 

• In ROM, security proof is easier than in standard model (without RO). 

• In a system that is proved secure in ROM, we replace the RO with a hash 
function, and hope that security remains. 

• This approach is widely used. 

• Limitations: RO can not be realized by any efficient algorithm (we can only 
assume that a hash function is a RO) 

There exists counterexample crypto-systems that  are secure in ROM but 
breakable when RO is replaced by any hash function.  
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Modification Detection 

• Modification Detection Code MDC 

M →Hash→ H 

M’→Hash→ H’ ≟ H 

• To provide integrity: 

– Store H=Hash(M) securely. Check H’=Hash(M’) ≟ H 

– Example. Simple protection of web-site:  

• compute hash code H, backup the site.   

• Check hash code H’ of website regularly, if H’H, replace the website 

with the backup copy. 

• Attack: to find a M’ M such that Hash(M’)=Hash(M).  

• Requirement: second preimage resistant (one-wayness) 
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Digital signatures 

• Digital signatures 

To sign a message M, first hash message M: H=Hash(M), 
then apply the signature function on H: Sx(H) is the (user 
x’s) signature of message M.  

Reason:  

Performance: Only need sign a short hash-code instead of a long 
message. 

Security: Signature needs redundancy for security. Simple 
redundancy scheme appears not secure (example: ISO 9796-1). 
Signature scheme with “provable security” all use hash. 

• Collision attack: find M’ M, but H’=H; then signature of M is the 
same as the signature of M’. In the real attack, sign on message M, 
but forge signature on M’, i.e.,  (M’, Sx(H’)=Sx(H))  

• Requirement: collision-free 
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Security of hash function 

• Second preimage resistance (target collision resistance) 

– Given, M and H=Hash(M), it is infeasible to find M’ ≠M, 
Hash(M’)=Hash(M). 

• Collision resistance (collision resistance) 

– It is infeasible to find distinct M’, M, Hash(M’)=Hash(M). 

• Second pre-image and collision always exist! The hope is to make it 
computationally infeasible 

• Note: collision resistance implies second preimage resistance. 

• If hash code length is m-bit, then: 

– To find second pre-image needs at most 2m computations of Hash 

– To find collision needs at most 2m/2 computations of Hash 

☆ 
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Birthday paradox 

• 23 people in a room, it is likely that there exists at least one 
collision (two or more persons are of the same birthday) 

 

Theorem 1. Randomly  chose N1/2 elements from a set 
containing N elements, then 

p=probability( 2 or more selections are the same) ≥ 1/2  

Proof. Randomly chose m elements from a set containing N 
elements, the probability m elements are all different is 

N

mN

N

N

N

N ))1((
....

)2()1( 
≈ e -m(m-1)/2N    

e=2.71828 

P= 

For m= 1.2*N1/2,  p =1-P ≈ 1- e-1.4/2 = 0.5 

☆ 
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Iterated Hash function  

h h h 

M1 M2 Mn 

H1 H2 Hn-1 
H0 

message 

H ... 

compressing (round) function    h: {0,1}m × {0,1}l → {0,1}m  

initial value H0  (m-bit)  

message M=(M1,...Mn),  Mi are l-bit blocks 

Hash code H=Hash(H0,M) 

Hi = h(Hi-1 ,Mi) i=1,2,..n   (chaining value, an m-bit block) 

H=Hn  

compress function 

☆ 
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Attacks 

Target attack (2nd pre-image attack):   

Given H0 and M, find M´≠ M, but  Hash(H0,M) = Hash(H0, M´)  

Free-start target attack (2nd pre-image attack with arbitrary IV): 

 Given (H0 ,M), find (H0´,M´)≠ (H0,M), s.t. 

Hash(H0,M) = Hash(H0´ ,M´)  

Chosen-message target attack: For given H0, specify a set C,  

  such that for each M in C, there is an M´≠M, s.t.  

   Hash(H0,M) = Hash(H0, M´)  

Collision attack:  Given H0, find M and M´≠M, s.t.  

   Hash(H0,M) = Hash(H0, M´)  

Semi free-start collision attack: Find H0, M, M´≠ M, s.t. 

 Hash(H0,M) = Hash(H0, M´)  

Free-start collision attack:  Find (H0 ,M) and  

(H0´,M´) ≠ (H0,M), but Hash(H0,M) = Hash(H0´ M´)  

 

• Target attack → collision attack 

• Secure Hash against free-start attacks is also secure against ´usual´ 
attacks 
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Why so many attacks? – MD5 

 

• Boer & Bosselaers [93]: free-start collision (pseudo 
collision: same message, different IV ) 

 Free-start collision attack:  Find (H0 ,M) and  

(H0´,M´) ≠ (H0,M), but Hash(H0,M) = Hash(H0´ M´) 
 

• Dobbertin [96]: semi free-start collisions ( different 
message, chosen IV) 

 Semi free-start collision attack: Find H0, M, M´≠ M, but 

 Hash(H0,M) = Hash(H0, M´)  
 

• Wang et.al [2004]:   

 Collision attack:  Given H0, find M and M´≠M, but   

   Hash(H0,M) = Hash(H0, M´)  
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Complexity of attacks on Hash 

• Brute-force target attacks require about 2m 

computations of h 

• Brute-force collision attacks require about 2m/2 

computations of h 

• Complexity : CFS-target ≤ Ctarget ≤ 2m 

• CFS-collision ≤ Csemi FS-collision ≤ Ccollision ≤ 2m/2  

• An attack on h implies an attack on Hash of same 

type 

– The converse is not true, Hash (‘chain’) can be 

weaker than h (‘link’) 
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Attacks on Hash 

Trivial free-start attack 

Hash(H0,M1,M2)=Hash(H1,M2) 
 

Trivial semi free-start attack [Miyaguchi et al 90] 

    if h has a fixed-point h(H,M)=H, then  

H=Hash(H,M)=Hash(H,M,M)=Hash(H,M,M,M)=… 

 

Long-message target attack [Winternitz 84]:  

If the given message has n blocks,then 

Ctarget(Hash)  ≤ 2×2m/n   for n ≤ 2m/2  

Ctarget(Hash)  ≤ 2×2m/2    for n> 2m/2, 
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Long message attack 

Long-message target attack [Winternitz 84]:  

Ctarget(Hash)  ≤ 2×2m/n   for n ≤ 2m/2  

Ctarget(Hash)  ≤ 2×2m/2    for n> 2m/2,    
 

For 2m/n random M1
’, compute H1=h(H0, M1

’) 

Pr[some H1
’ = some Hi]  0.63, for such H1

’ and Hi 

Hash(H0,M1
’,Mi+1,…Mn)= Hash(H0,M1,…,Mi,Mi+1,…Mn) 

h h h 

M1 M2 Mn 

H1 
H2 Hn-1 

H0 H ... 

h 

M1
’
 

H1
’ in {Hi}? H0 

2m/n random   
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MD-strengthening 

• Taking advantage that M’ can have different 
length from M, one can break Hash without 
breaking h. 

• Merkle-Damgaard strengthening: 

   Let the last block Mn be the length of the actual 
message in bits. 

• Th.2 Against free-start collision attack, HashMD is 
as secure as h [Merkle C89, Damgaard C89, 
Naor-Yung 89] 

☆ 
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Free-start Collision attack:  

• Free-start collision attack on HashMD implies free-start 

collision on h. (inverse is obvious) 

• Proof: exists i,j: Hi  H’i, Hi+1 = H’j+1 

 

 

 

 

 

 

 

 

 

• Collision attack on HashMD implies free-start collision on 

h. (inverse is unknown) 

 

h h h 

M1 M2 ML1 

H2 Hn-1 
H0 

... 

h h h 

N1 N2 NL2 

H‘2 H‘n-1 
H‘0 

H 

... 
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Target attack when h is not one-way 

  (meet-in-the-middle  target attack by working backwards) 
 

• Th.3     Ctarget(HashMD) ≤ 2m/2 CFS-target(h)1/2 

–  If obtaining random inverse of h needs 2s computations, then 

target attack on HashMD(.,.) needs at most  2(m+s)/2 [Lai-Massey 92]   
 

Attack: given HashMD(H0,M1,M2,M3,..), i.e, given H2, compute  

        forwards 2(m+s)/2 values of H1
’ ,  backwards 2(m-s)/2 values of G1 

Pr[some H’1 = some G1]=1-[(1-2-m)(m-s)/2](m+s)/2=1-(1-2-m)m=0.63 

       then, for such M1’,M2’, 

HashMD(H0,M1’,M2’,M3,..)=HashMD(H0,M1,M2,M3,..) 

h 

M1‘  

H1‘  H0 

2(m+s)/2 

h 

M2‘ 

H2 G1 

2(m-s)/2 
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Meet-in-the-middle 

• Randomly choose A={x1,…xX}, B={y1,…yY} from 

a set S with N elements. 

• Probability that some xi= some yj is  1- (1-Y/N)X  

Pr(xi  yj) 

=Pr(x1 {yj})p(x2 {yj})…p(xX {yj}) =((N-Y)/N)X=(1-Y/N)X  

 

Theorem. A,BS.  if |A| |B|  |S|, then 

P(AB )  1- e-1=0.63     e=2.71828 

 

This fact has been used in many new attacks on ciphers and hash functions 

☆ 
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The issue with MD construction  

• One collision(2nd-preimage) implies arbitrarily many 
collision(2nd-preimage) 

h 

h 

h 

M1 

M“ 

LM 

Hn-1 
H0 

... 

h 

h 

h 

N1 

M‘ 

LM 

H‘ 

Hn-1 
H0 

H 

... 
... 

• The impact: 

– “random” collision  “useful/harmful” collision 

– Provable security in Random Oracle model may not hold 

when replace RO with Hash. 
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Document collision with MD5  

h h 

h 

(if X show M1, else show M2) M2 

X 
Hi H0 

... h h 

h M1 

Y 

H‘ 

H ... 

• Fixed H0, select prefix message, from the resulting Hi, find 

colliding messages X, Y; then attach (M1,M2).  

– (instruction,X,M1,M2) 

– (instruction,Y,M1,M2) 

– Have same hash code (signature) 
• Stefan Lucks and Magnus Daum (Eurocrypt’05 Rump Session) 
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HashMD - compress 

• Free-start collision attacks:  HashMD is as secure as h 

• Collision attack: collision of HashMD implies free-start collision of 
h. (inverse is unknown) 

 

• Free-start target attack on h implies Target attack on HashMD  

• Target attack: HashMD cannot achieve ideal security ( C<2m) 

 

• Goal: find secure h against free-start collision attack (target 
attack is harder than collision) 

 

• open: how to design a hash function that is secure against 
target attack and without the undesirable properties? 

– Prefix-free, DME, chop, ROX,…, (next standard?) 

☆ 
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Compress functions 

• Design a cryptographic hash function reduces to 

finding a oneway compressing function from 

{0,1}m+l to {0,1}m, where 

– The output (hash-code) size m is for security 

(at least 128 bits?) 

– The extra input (message) size l is for 

efficiency (l=m,2m,3m,4m,…) 

• The current construction – iteration + MD 

strengthening– has some drawback need to be 

addressed 

 



Sponge Construction 

• (p0,…pi) input (message) 

• (z0,z1,..) output (hash code) 

• f can be any transformation (permutation) 



Exercise    

1. What are the differences between collision attack and target attack? 

2. There are m students in a room. What is the probability that  

        there are exactly 3 of them have the same birthday? 

Note: give the solution as a function of m (approximation is not needed). 

1.  For double DES Ek2(Ek1M)=C, using the birthday argument, by meet-

in-the-middle, one can 

– Compute Ek1(M)=S for 232 choices of k1  

– Compute Dk2(C)=T for 232 choices of k2 

– because |{S}| |{T}|  264 , we find k1,k2, s.t Ek2(Ek1M)=C 

– i.e. the complexity of break double DES is about 232, not 256. 

• Is this correct, and why?  

• Deadline:  June 2 

• Format: Subject:  CS381-name-EX.# to gracehgs@mail.sjtu.edu.cn 


