
 Lecture slides by Lawrie Brown for
“Cryptography and Network Security”, 5/e, by William

Stallings, Chapter 5 –”Advanced Encryption Standard”.

Advanced Encryption Standard

演示者
演示文稿备注
Lecture slides by Lawrie Brown for “Cryptography and Network Security”, 5/e, by William Stallings, Chapter Chapter 5 –”Advanced Encryption Standard”.

Chapter 5 –Advanced Encryption Standard

"It seems very simple."

"It is very simple. But if you don't know what the key is it's virtually
indecipherable."

—Talking to Strange Men, Ruth Rendell

演示者
演示文稿备注
Intro quote.Indecipherable 破译不出的 难辨认的

Origins
 clearly a replacement for DES was needed
 have theoretical attacks that can break it
 have demonstrated exhaustive key search attacks

 can use Triple-DES – but slow, has small blocks
 U.S. NIST issued call for ciphers in 1997
 15 candidates accepted in Jun 98
 5 were shortlisted in Aug-99
 Rijndael was selected as the AES in Oct-2000
 issued as FIPS PUB 197 standard in Nov-2001

演示者
演示文稿备注
The Advanced Encryption Standard (AES) was published by NIST (National Institute of Standards and Technology) in 2001. AES is a symmetric block cipher that is intended to replace DES as the approved standard for a wide range of applications. The AES cipher (& other candidates) form the latest generation of block ciphers, and now we see a significant increase in the block size - from the old standard of 64-bits up to 128-bits; and keys from 128 to 256-bits. In part this has been driven by the public demonstrations of exhaustive key searches of DES. Whilst triple-DES is regarded as secure and well understood, it is slow, especially in s/w. In a first round of evaluation, 15 proposed algorithms were accepted. A second round narrowed the field to 5 algorithms. NIST completed its evaluation process and published a final standard (FIPS PUB 197) in November of 2001. NIST selected Rijndael as the proposed AES algorithm. The two researchers who developed and submitted Rijndael for the AES are both cryptographers from Belgium: Dr. Joan Daemen and Dr.Vincent Rijmen.

AES Requirements
 private key symmetric block cipher
 128-bit data, 128/192/256-bit keys
 stronger & faster than Triple-DES
 active life of 20-30 years (+ archival use)
 provide full specification & design details
 both C & Java implementations
 NIST have released all submissions & unclassified analyses

演示者
演示文稿备注
Listed above are NIST’s requirements for the AES candidate submissions. These criteria span the range of concerns for the practical application of modern symmetric block ciphers.

The AES Cipher - Rijndael
 designed by Rijmen-Daemen in Belgium
 has 128/192/256 bit keys, 128 bit data
 an iterative rather than feistel cipher
 processes data as block of 4 columns of 4 bytes
 operates on entire data block in every round

 designed to be:
 resistant against known attacks
 speed and code compactness on many CPUs
 design simplicity

演示者
演示文稿备注
The Rijndael proposal for AES defined a cipher in which the block length and the key length can be independently specified to be 128,192,or 256 bits. The AES specification uses the same three key size alternatives but limits the block length to 128 bits. Rijndael is an academic submission, based on the earlier Square cipher, from Belgium academics Dr Joan Daemen and Dr Vincent Rijmen. It is an iterative cipher (operates on entire data block in every round) rather than feistel (operate on halves at a time), and was designed to have characteristics of: Resistance against all known attacks, Speed and code compactness on a wide range of platforms, & Design simplicity.

AES Encryption
Process

演示者
演示文稿备注
Stallings Figure 5.1 shows the overall encryption process in AES.

AES Structure
data block of 4 columns of 4 bytes is state
key is expanded to array of words
has 9/11/13 rounds in which state undergoes:
byte substitution (1 S-box used on every byte)
 shift rows (permute bytes between groups/columns)
mix columns (subs using matrix multiply of groups)
 add round key (XOR state with key material)
view as alternating XOR key & scramble data bytes

 initial XOR key material & incomplete last round
with fast XOR & table lookup implementation

演示者
演示文稿备注
The input to the AES encryption and decryption algorithms is a single 128-bit block, depicted in FIPS PUB 197, as a square matrix of bytes .This block is copied into the State array, which is modified at each stage of encryption or decryption. After the final stage, State is copied to an output.The key is expanded into 44/52/60 lots of 32-bit words (see later), with 4 used in each round. Note that the ordering of bytes within a matrix is by column. So, for example, the first four bytes of a 128-bit plaintext input to the encryption cipher occupy the first column of the in matrix, the second four bytes occupy the second column, and so on. Similarly, the first four bytes of the expanded key, which form a word, occupy the first column of the w matrix. The data computation then consists of an “add round key” step, then 9/11/13 rounds with all 4 steps, and a final 10th/12th/14th step of byte subs + mix cols + add round key. This can be viewed as alternating(交替) XOR key & scramble(混乱) data bytes operations. All of the steps are easily reversed, and can be efficiently implemented using XOR’s & table lookups.

AES Structure

演示者
演示文稿备注
Stallings Figure 5.3 shows the structure of AES in more detail. The cipher consists of N rounds, where the number of rounds depends on the key length: 10 rounds for a 16-byte key; 12 rounds for a 24-byte key; and 14 rounds for a 32-byte key. The first N – 1 rounds consist of four distinct transformation functions: SubBytes, ShiftRows, MixColumns, and AddRoundKey, which are described subsequently. The final round contains only 3 transformation, and there is a initial single transformation (AddRoundKey) before the first round, which can be considered Round 0. Each transformation takes one or more 4 x 4 matrices as input and produces a 4 x 4 matrix as output. The output of each round is a 4 x 4 matrix, with the output of the final round being the ciphertext. Also, the key expansion function generates N + 1 round keys, each of which is a distinct 4 x 4 matrix. Each round key serve as one of the inputs to the AddRoundKey transformation in each round.

Some Comments on AES
1. an iterative rather than feistel cipher
2. key expanded into array of 32-bit words

1. four words form round key in each round

3. 4 different stages are used as shown
4. has a simple structure
5. only AddRoundKey uses key
6. AddRoundKey a form of Vernam cipher
7. each stage is easily reversible
8. decryption uses keys in reverse order
9. decryption does recover plaintext
10. final round has only 3 stages

演示者
演示文稿备注
Before delving into details, can make several comments about the overall AES structure. See text for details.

Substitute Bytes
 a simple substitution of each byte
 uses one table of 16x16 bytes containing a permutation

of all 256 8-bit values
 each byte of state is replaced by byte indexed by row

(left 4-bits) & column (right 4-bits)
 eg. byte {95} is replaced by byte in row 9 column 5
 which has value {2A}

 S-box constructed using defined transformation of values
in GF(28)

 designed to be resistant to all known attacks

演示者
演示文稿备注
We now turn to a discussion of each of the four transformations used in AES. For each stage, we mention the forward (encryption) algorithm, the inverse (decryption) algorithm, and the rationale for the design of that stage. The Substitute bytes stage uses an S-box to perform a byte-by-byte substitution of the block. There is a single 8-bit wide S-box used on every byte. This S-box is a permutation of all 256 8-bit values, constructed using a transformation which treats the values as polynomials in GF(28) – however it is fixed, so really only need to know the table when implementing. Decryption requires the inverse of the table. These tables are given in Stallings Table 5.2.The table was designed to be resistant to known cryptanalytic attacks. Specifically, the Rijndael developers sought a design that has a low correlation between input bits and output bits, with the property that the output cannot be described as a simple mathematical function of the input, with no fixed points and no “opposite fixed points”.

Substitute Bytes

演示者
演示文稿备注
As this diagram from Stallings Fig 5.5a shows, the Byte Substitution operates on each byte of state independently, with the input byte used to index a row/col in the table to retrieve the substituted value.

Substitute Bytes Example

演示者
演示文稿备注
Show an example of the SubBytes transformation from the text.

Shift Rows
 a circular byte shift in each each
 1st row is unchanged
 2nd row does 1 byte circular shift to left
 3rd row does 2 byte circular shift to left
 4th row does 3 byte circular shift to left

 decrypt inverts using shifts to right
 since state is processed by columns, this step permutes

bytes between the columns

演示者
演示文稿备注
The ShiftRows stage provides a simple “permutation” of the data, whereas the other steps involve substitutions. Further, since the state is treated as a block of columns, it is this step which provides for diffusion of values between columns. It performs a circular rotate on each row of 0, 1, 2 & 3 places for respective rows. When decrypting it performs the circular shifts in the opposite direction for each row. This row shift moves an individual byte from one column to another, which is a linear distance of a multiple of 4 bytes, and ensures that the 4 bytes of one column are spread out to four different columns.

Shift Rows

演示者
演示文稿备注
Stalling Figure 5.7a illustrates the Shift Rows permutation. Then show an example of ShiftRows from the text.

Mix Columns
 each column is processed separately
 each byte is replaced by a value dependent on all 4 bytes in

the column
 effectively a matrix multiplication in GF(28) using prime poly

m(x) =x8+x4+x3+x+1

演示者
演示文稿备注
The forward mix column transformation, called MixColumns, operates on each column individually. Each byte of a column is mapped into a new value that is a function of all four bytes in that column. It is a substitution that makes use of arithmetic over GF(2^8). It is designed as a matrix multiplication where each byte is treated as a polynomial in GF(28). The inverse used for decryption involves a different set of constants.This gives good mixing of the bytes within each column. Combined with the “shift rows” step provides good avalanche, so that within a few rounds, all output bits depend on all input bits.

Mix Columns

演示者
演示文稿备注
Stalling Figure 5.5b illustrates the Mix Columns transformation.

Mix Columns Example

演示者
演示文稿备注
Show an example of the MixColumns transformation from the text, along with verification of the first column of this example.

AES Arithmetic
 uses arithmetic in the finite field GF(28)
 with irreducible polynomial
m(x) = x8 + x4 + x3 + x + 1
which is (100011011) or {11b}

 e.g.
{02} • {87} mod {11b} = (1 0000 1110) mod {11b}
= (1 0000 1110) xor (1 0001 1011) = (0001 0101)

演示者
演示文稿备注
AES uses arithmetic in the finite field GF(28), with the irreducible polynomial m(x) = x8 + x4 + x3 + x + 1. AES operates on 8-bit bytes. Addition of two bytes is defined as the bitwise XOR operation. Multiplication of two bytes is defined as multiplication in the finite field GF(28). In particular, multiplication of a value by x (i.e., by {02}) can be implemented as a 1-bit left shift followed by a conditional bitwise XOR with (0001 1011) if the leftmost bit of the original value (prior to the shift) is 1.

Mix Columns
 can express each col as 4 equations
 to derive each new byte in col

 decryption requires use of inverse matrix
 with larger coefficients, hence a little harder

 have an alternate characterisation
 each column a 4-term polynomial
 with coefficients in GF(28)
 and polynomials multiplied modulo (x4+1)

演示者
演示文稿备注
In practise, you implement Mix Columns by expressing the transformation on each column as 4 equations (Stallings equation 5.4) to compute the new bytes for that column. This computation only involves shifts, XORs & conditional XORs (for the modulo reduction).The decryption computation requires the use of the inverse of the matrix, which has larger coefficients, and is thus potentially a little harder & slower to implement.The designers & the AES standard provide an alternate characterisation of Mix Columns, which treats each column of State to be a four-term polynomial with coefficients in GF(28). Each column is multiplied by a fixed polynomial a(x) given in Stallings eqn 5.7. Whilst this is useful for analysis of the stage, the matrix description is all that’s required for implementation.The mix column transformation combined with the shift row transformation ensures that after a few rounds, all output bits depend on all input bits. In addition, the choice of coefficients in MixColumns, which are all {01}, {02}, or {03}, was influenced by implementation considerations.

Add Round Key
 XOR state with 128-bits of the round key
 again processed by column
 inverse for decryption identical
 since XOR own inverse, with reversed keys

 designed to be as simple as possible
 a form of Vernam cipher on expanded key
 requires other stages for complexity / security

演示者
演示文稿备注
Lastly is the Add Round Key stage which is a simple bitwise XOR of the current block with a portion of the expanded key. Note this is the only step which makes use of the key and obscures the result, hence MUST be used at start and end of each round, since otherwise could undo effect of other steps. But the other steps provide confusion/diffusion/non-linearity. That us you can look at the cipher as a series of XOR with key then scramble/permute block repeated. This is efficient and highly secure it is believed.

Add Round Key

演示者
演示文稿备注
Stallings Figure 5.5b illustrates the Add Round Key stage, which like Byte Substitution, operates on each byte of state independently.

AES Round

演示者
演示文稿备注
Can thus now view all the internal details of the AES round, showing how each byte of the state is manipulated, as shown in Stallings Figure 5.4.

AES Key Expansion
 takes 128-bit (16-byte) key and expands into array of

44/52/60 32-bit words
 start by copying key into first 4 words
 then loop creating words that depend on values in previous &

4 places back
 in 3 of 4 cases just XOR these together
1st word in 4 has rotate + S-box + XOR round constant on

previous, before XOR 4th back

演示者
演示文稿备注
The AES key expansion algorithm takes as input a 4-word (16-byte) key and produces a linear array of words, providing a 4-word round key for the initial AddRoundKey stage and each of the 10/12/14 rounds of the cipher. It involves copying the key into the first group of 4 words, and then constructing subsequent groups of 4 based on the values of the previous & 4th back words. The first word in each group of 4 gets “special treatment” with rotate + S-box + XOR constant on the previous word before XOR’ing the one from 4 back. In the 256-bit key/14 round version, there’s also an extra step on the middle word. The text includes in section 5.4 pseudocode that describes the key expansion.

AES Key Expansion

演示者
演示文稿备注
The first block of the AES Key Expansion is shown here in Stallings Figure 5.9a. It shows each group of 4 bytes in the key being assigned to the first 4 words, then the calculation of the next 4 words based on the values of the previous 4 words, which is repeated enough times to create all the necessary subkey information.

Key Expansion Rationale
 designed to resist known attacks
 design criteria included
 knowing part key insufficient to find many more
 fast on wide range of CPU’s
 use round constants to break symmetry
 diffuse key bits into round keys
 enough non-linearity to hinder analysis
 simplicity of description

演示者
演示文稿备注
The Rijndael developers designed the expansion key algorithm to be resistant to known cryptanalytic attacks. It is designed to be simple to implement, but by using round constants break symmetries, and make it much harder to deduce other key bits if just some are known (but once have as many consecutive bits as are in key, can then easily recreate the full expansion). The design criteria used are listed above.

AES Example
Key Expansion

演示者
演示文稿备注
We now work through an example, and consider some of its implications. The plaintext, key, and resulting ciphertext are as follows: Plaintext: 0123456789abcdeffedcba9876543210 Key: 0f1571c947d9e8590cb7add6af7f6798 Ciphertext: ff0b844a0853bf7c6934ab4364148fb9 Table 5.3 shows the expansion of the 16-byte key into 10 round keys. As previously explained, this process is performed word by word, with each four-byte word occupying one column of the word round key matrix. The left hand column shows the four round key words generated for each round. The right hand column shows the steps used to generate the auxiliary word used in key expansion. We begin, of course, with the key itself serving as the round key for round 0.

AES Example
Encryption

演示者
演示文稿备注
Next, Table 5.4 shows the progression of the state matrix through the AES encryption process. The first column shows the value of the state matrix at the start of a round. For the first row, the state matrix is just the matrix arrangement of the plaintext. The second, third, and fourth columns show the value of the state matrix for that round after the SubBytes, ShiftRows, and MixColumns transformations, respectively. The fifth column shows the round key. You can verify that these round keys equate with those shown in Table 5.3. The first column shows the value of the state matrix resulting from the bitwise XOR of the state after the preceding MixColumns with the round key for the preceding round.

AES Example
Avalanche

演示者
演示文稿备注
In any good cipher design, want the avalanche effect, in which a small change in plaintext or key produces a large change in the ciphertext. Using the example from Table 5.4, Table 5.5 shows the result when the eighth bit of the plaintext is changed. The second column of the table shows the value of the state matrix at the end of each round for the two plaintexts. Note that after just one round, 20 bits of the state vector differ. And after two rounds, close to half the bits differ. This magnitude of difference propagates through the remaining rounds. A bit difference in approximately half the positions in the most desirable outcome.

AES Decryption
 AES decryption is not identical to encryption since steps

done in reverse
 but can define an equivalent inverse cipher with steps as for

encryption
 but using inverses of each step
 with a different key schedule

 works since result is unchanged when
 swap byte substitution & shift rows
 swap mix columns & add (tweaked) round key

演示者
演示文稿备注
The AES decryption cipher is not identical to the encryption cipher (Stallings Figure 5.3). The sequence of transformations for decryption differs from that for encryption, although the form of the key schedules for encryption and decryption is the same. This has the disadvantage that two separate software or firmware modules are needed for applications that require both encryption and decryption. There is, however, an equivalent version of the decryption algorithm that has the same structure as the encryption algorithm, with the same sequence of transformations as the encryption algorithm (with transformations replaced by their inverses). To achieve this equivalence, a change in key schedule is needed. By constructing an equivalent inverse cipher with steps in same order as for encryption, we can derive a more efficient implementation. Clearly swapping the byte substitutions and shift rows has no effect, since work just on bytes. Swapping the mix columns and add round key steps requires the inverse mix columns step be applied to the round keys first – this makes the decryption key schedule a little more complex with this construction, but allows the use of same h/w or s/w for the data en/decrypt computation.

AES Decryption

演示者
演示文稿备注
Illustrate the equivalent inverse cipher with Stallings Figure 5.10.

Implementation Aspects
 can efficiently implement on 8-bit CPU
 byte substitution works on bytes using a table of 256 entries
 shift rows is simple byte shift
 add round key works on byte XOR’s
 mix columns requires matrix multiply in GF(28) which works

on byte values, can be simplified to use table lookups & byte
XOR’s

演示者
演示文稿备注
The Rijndael proposal [DAEM99] provides some suggestions for efficient implementation on 8- bit processors, typical for current smart cards, and on 32-bit processors, typical for PCs. AES can be implemented very efficiently on an 8-bit processor. AddRoundKey is a bytewise XOR operation. ShiftRows is a simple byte shifting operation. SubBytes operates at the byte level and only requires a lookup of a 256 byte table S. MixColumns (matrix multiply) can be implemented as byte XOR’s & table lookups with a 2nd 256 byte table X2, using the formulae shown in Stallings equation 5.9.

Implementation Aspects
 can efficiently implement on 32-bit CPU
 redefine steps to use 32-bit words
 can precompute 4 tables of 256-words
 then each column in each round can be computed using 4 table

lookups + 4 XORs

 designers believe this very efficient implementation was a key
factor in its selection as the AES cipher

演示者
演示文稿备注
AES can also be very efficiently implemented on an 32-bit processor, by rewriting the stage transformation to use 4 table lookups & 4 XOR’s per column of state. These tables can be computed in advance using the formulae shown in the text, and need 4Kb to store.The developers of Rijndael believe that this compact, efficient implementation was probably one of the most important factors in the selection of Rijndael for AES.

Summary
 have considered:
 the AES selection process
 the details of Rijndael – the AES cipher
 looked at the steps in each round
 the key expansion
 implementation aspects

演示者
演示文稿备注
Chapter 5 summary.

	Advanced Encryption Standard
	Chapter 5 –Advanced Encryption Standard�
	Origins
	AES Requirements
	The AES Cipher - Rijndael
	AES Encryption Process
	AES Structure
	AES Structure
	Some Comments on AES
	Substitute Bytes
	Substitute Bytes
	Substitute Bytes Example
	Shift Rows
	Shift Rows
	Mix Columns
	Mix Columns
	Mix Columns Example
	AES Arithmetic
	Mix Columns
	Add Round Key
	Add Round Key
	AES Round
	AES Key Expansion
	AES Key Expansion
	Key Expansion Rationale
	AES Example Key Expansion
	AES Example Encryption
	AES Example Avalanche
	AES Decryption
	AES Decryption
	Implementation Aspects
	Implementation Aspects
	Summary

