Advanced Encryption Standard

Lecture slides by Lawrie Brown for "Cryptography and Network Security", 5/e, by William Stallings, Chapter 5 –"Advanced Encryption Standard".

Chapter 5 – Advanced Encryption Standard

"It seems very simple."

"It is very simple. But if you don't know what the key is it's virtually indecipherable."

—Talking to Strange Men, Ruth Rendell

Origins

- clearly a replacement for DES was needed
 - have theoretical attacks that can break it
 - have demonstrated exhaustive key search attacks
- can use Triple-DES but slow, has small blocks
- U.S. NIST issued call for ciphers in 1997
- 15 candidates accepted in Jun 98
- 5 were shortlisted in Aug-99
- Rijndael was selected as the AES in Oct-2000
- issued as FIPS PUB 197 standard in Nov-2001

AES Requirements

- private key symmetric block cipher
- 128-bit data, 128/192/256-bit keys
- stronger & faster than Triple-DES
- active life of 20-30 years (+ archival use)
- provide full specification & design details
- both C & Java implementations
- NIST have released all submissions & unclassified analyses

The AES Cipher - Rijndael

- designed by Rijmen-Daemen in Belgium
- has 128/192/256 bit keys, 128 bit data
- an **iterative** rather than **feistel** cipher
 - processes data as block of 4 columns of 4 bytes
 - operates on entire data block in every round
- designed to be:
 - resistant against known attacks
 - speed and code compactness on many CPUs
 - design simplicity

AES Structure

- \geq data block of 4 columns of 4 bytes is state
- ➢ key is expanded to array of words
- ➢ has 9/11/13 rounds in which state undergoes:
 - byte substitution (1 S-box used on every byte)
 - shift rows (permute bytes between groups/columns)
 - mix columns (subs using matrix multiply of groups)
 - add round key (XOR state with key material)
 - view as alternating XOR key & scramble data bytes
- initial XOR key material & incomplete last round
 with fast XOR & table lookup implementation

AES Structure

Some Comments on AES

- 1. an **iterative** rather than **feistel** cipher
- key expanded into array of 32-bit words
 four words form round key in each round
- 3. 4 different stages are used as shown
- 4. has a simple structure
- 5. only AddRoundKey uses key
- 6. AddRoundKey a form of Vernam cipher
- 7. each stage is easily reversible
- 8. decryption uses keys in reverse order
- 9. decryption does recover plaintext
- 10. final round has only 3 stages

Substitute Bytes

- a simple substitution of each byte
- uses one table of 16x16 bytes containing a permutation of all 256 8-bit values
- each byte of state is replaced by byte indexed by row (left 4-bits) & column (right 4-bits)
 - eg. byte {95} is replaced by byte in row 9 column 5
 - which has value {2A}
- S-box constructed using defined transformation of values in GF(2⁸)
- designed to be resistant to all known attacks

Substitute Bytes

Substitute Bytes Example

EA	04	65	85		
83	45	5D	96	_	ł
5C	33	98	B 0	_	4
F0	2D	AD	C5		8

87	F2	4D	97
EC	6E	4C	90
4A	C3	46	E7
8C	D8	95	A6

Shift Rows

- a circular byte shift in each each
 - 1st row is unchanged
 - 2nd row does 1 byte circular shift to left
 - 3rd row does 2 byte circular shift to left
 - 4th row does 3 byte circular shift to left
- decrypt inverts using shifts to right
- since state is processed by columns, this step permutes bytes between the columns

Shift Rows

s _{0,0}	s _{0,1}	s _{0,2}	s _{0,3}
s _{1,1}	s _{1,2}	s _{1,3}	s _{1,0}
\$ _{2,2}	\$ _{2,3}	\$ _{2,0}	\$ _{2,1}
\$ _{3,3}	s _{3,0}	s _{3,1}	s _{3,2}

87	F2	4D	97		
EC	6E	4C	90	_	
4A	C3	46	E7	-	
8C	D8	95	A6		

87	F2	4D	97
6E	4C	90	EC
46	E7	4A	C3
A6	8C	D8	95

Mix Columns

- each column is processed separately
- each byte is replaced by a value dependent on all 4 bytes in the column
- effectively a matrix multiplication in $GF(2^8)$ using prime poly m(x) =x⁸+x⁴+x³+x+1

$$\begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} \begin{bmatrix} s_{0,0} & s_{0,1} & s_{0,2} & s_{0,3} \\ s_{1,0} & s_{1,1} & s_{1,2} & s_{1,3} \\ s_{2,0} & s_{2,1} & s_{2,2} & s_{2,3} \\ s_{3,0} & s_{3,1} & s_{3,2} & s_{3,3} \end{bmatrix} = \begin{bmatrix} s_{0,0} & s_{0,1} & s_{0,2} & s_{0,3} \\ s_{1,0} & s_{1,1} & s_{1,2} & s_{1,3} \\ s_{2,0} & s_{2,1} & s_{2,2} & s_{2,3} \\ s_{3,0} & s_{3,1} & s_{3,2} & s_{3,3} \end{bmatrix}$$

Mix Columns

Mix Columns Example

87	F2	4D	97		47	40	A3	4C
6E	4C	90	EC	_	37	D4	70	9F
46	E7	4A	C3		94	E4	3A	42
A6	8C	D8	95		ED	A5	A6	BC

({02} • {87})	⊕ ({03} • {6E })	⊕ {46}	⊕ {A6}	= {47}
{87}	⊕ ({02} • {6E })	\oplus ({03} • {46})	⊕ {A6}	= {37}
{87}	⊕ {6E }	\oplus ({02} • {46})	⊕({03} • { A6})	= {94}
({03} • {87})	⊕ {6E }	⊕ {46}	⊕ ({02} • { A6})	= {ED}

AES Arithmetic

- uses arithmetic in the finite field $GF(2^8)$
- with irreducible polynomial $m(x) = x^8 + x^4 + x^3 + x + 1$ which is (100011011) or {11b}

```
e.g.
{02} • {87} mod {11b} = (1 0000 1110) mod {11b}
= (1 0000 1110) xor (1 0001 1011) = (0001 0101)
```

Mix Columns

- can express each col as 4 equations
 - to derive each new byte in col
- decryption requires use of inverse matrix
 - with larger coefficients, hence a little harder
- have an alternate characterisation
 - each column a 4-term polynomial
 - with coefficients in GF(2⁸)
 - and polynomials multiplied modulo (x^4+1)

Add Round Key

- XOR state with 128-bits of the round key
- again processed by column
- inverse for decryption identical
 - since XOR own inverse, with reversed keys
- designed to be as simple as possible
 - a form of Vernam cipher on expanded key
 - requires other stages for complexity / security

Add Round Key

 \oplus

s _{0,0}	s _{0,1}	s _{0,2}	s _{0,3}
s _{1,0}	s _{1,1}	s _{1,2}	s _{1,3}
S _{2,0}	s _{2.1}	\$ _{2,2}	\$ _{2,3}
	-	_,_	2,2

	Wi	W _{i+1}	W _{i+2}	W _{i+3}	=
--	----	------------------	------------------	------------------	---

s' _{0,0}	s' _{0,1}	s' _{0,2}	s' _{0,3}
s' _{1,0}	s' _{1,1}	s' _{1,2}	s' _{1,3}
s' _{2,0}	s' _{2,1}	s' _{2,2}	s' _{2,3}
s' _{3,0}	s' _{3,1}	s' _{3,2}	s' _{3,3}

AES Round

AES Key Expansion

- takes 128-bit (16-byte) key and expands into array of 44/52/60 32-bit words
- start by copying key into first 4 words
- then loop creating words that depend on values in previous & 4 places back
 - in 3 of 4 cases just XOR these together
 - 1st word in 4 has rotate + S-box + XOR round constant on previous, before XOR 4th back

AES Key Expansion

Key Expansion Rationale

- designed to resist known attacks
- design criteria included
 - knowing part key insufficient to find many more
 - fast on wide range of CPU's
 - use round constants to break symmetry
 - diffuse key bits into round keys
 - enough non-linearity to hinder analysis
 - simplicity of description

Key Words	Auxiliary Function
w0 = 0f 15 71 c9	RotWord(w3)= 7f 67 98 af = x1
w1 = 47 d9 e8 59	SubWord(x1)= d2 85 46 79 = y1
w2 = 0c b7 ad	Rcon(1)= 01 00 00 00
w3 = af 7f 67 98	y1 ⊕ Rcon(1)= d3 85 46 79 = z1
w4 = w0 ⊕ z1 = dc 90 37 b0	RotWord(w7) = 81 15 a7 38 = x2
w5 = w4 ⊕ w1 = 9b 49 df e9	SubWord(x4) = 0c 59 5c 07 = y2
w6 = w5 ⊕ w2 = 97 fe 72 3f	Rcon(2) = 02 00 00 00 00
$W' = W6 \oplus W3 = 38 81 15 a/$	y2 () Recon(2) = 66 d3 of of = x2
$w_0 = w_0 \oplus z_2 = d_2 C_9 G_0 D_7$	Rotword(w11) = 11 d3 c6 e6 = x3
$w_{3} = w_{0} \oplus w_{5} = 49 00 D4 50$	$B_{COP}(3) = 04,00,00,00$
$w10 = w3 \oplus w0 = de 7e co of$ $w11 = w10 \oplus w7 = e6 ff d3 c6$	$x_3 \oplus Rcon(3) = 12 66 b4 8e = z_3$
$w_{11} = w_{10} \oplus w_{7} = e_{0} \text{ af df } 39$	RotWord(w15) = ae 7e c0 b1 = x4
$w13 = w12 \oplus w9 = 89 2f 6b 67$	SubWord(x3) = $e4 f3 ba c8 = v4$
w14 = w13 w10 = 57 51 ad 06	Rcon(4) = 08 00 00 00
w15 = w14 \oplus w11 = b1 ae 7e c0	y4 ⊕ Rcon(4)= ec f3 ba c8 = 4
w16 = w12	RotWord(w19)= 8c dd 50 43 = x5
w17 = w16 \oplus w13 = a5 73 0e 96	SubWord(x4)= 64 cl 53 la = y5
w18 = w17 ⊕ w14 = f2 22 a3 90	Rcon(5) = 10 00 00 00
w19 = w18 \oplus w15 = 43 8c dd 50	y5 ⊕ Rcon(5)= 74 c1 53 1a = z5
w20 = w16 z5 = 58 9d 36 eb	$RotWord(w23) = 40 \ 46 \ bd \ 4c = x6$
w21 = w20 (+) w17 = fd ee 38 7d	SubWord(x5) = 09 5a 7a 29 = y6
$w_{22} = w_{21} \oplus w_{18} = 01 \text{ cc } 90 \text{ ed}$	$v_6 \oplus B_{con}(6) = 29 5a 7a 29 = z6$
$w_{23} = w_{22} \oplus w_{13} = 40 40 40 50$ $w_{24} = w_{20} \oplus \pi 6 = 71 c7 4c c^2$	PotWord(w27) = a5 a9 ef cf = x7
$w_{24} = w_{20} \oplus 20 = 71 \text{ c}74\text{ c} \text{ c}2$ $w_{25} = w_{24} \oplus w_{21} = 8c 29 74 \text{ bf}$	SubWord(x_6)= 06 d3 df 8a = v_7
w26 = w25 ① w22 = 83 e5 ef 52	Rcon(7) = 40 00 00 00
w27 = w26 \oplus w23 = cf a5 a9 ef	y7 ⊕ Rcon(7)= 46 d3 df 8a = z7
w28 = w24 \oplus z7 = 37 14 93 48	RotWord(w31)= 7d al 4a f7 = x8
w29 = w28 \oplus w25 = bb 3d e7 f7	SubWord(x7)= ff 32 d6 68 = y8
w30 = w29 ⊕ w26 = 38 d8 08 a5	Rcon(8) = 80 00 00 00
w31 = w30 ⊕ w27 = f7 7d al 4a	y8 ⊕ Rcon(8)= 7f 32 d6 68 = z8
w32 = w28 ⊕ z8 = 48 26 45 20	RotWord(w35) = be 0b 38 3c = x9
$w_{33} = w_{32} \oplus w_{29} = f_3 \ 1b \ a_2 \ d/$	Subword(x8) = ae 2b 07 eb = y9
$w_{34} = w_{33} \oplus w_{30} = c_0 c_3 a_0 / 2$ $w_{35} = w_{34} \oplus w_{32} = 2c_0 b_0 (b_0 2)$	$y_9 \oplus Rcon(9) = b_5 2b 07 eb = z_9$
$w_{36} = w_{32} \oplus w_{32} = 5c \ be \ ob \ 3d$ $w_{36} = w_{32} \oplus z_9 = 5d \ 0d \ 42 \ cb$	RotWord(w39) = 6b 41 56 f9 = x10
$w_{37} = w_{36} \oplus w_{33} = 0.016 \oplus 0.16$	SubWord(x9) = 7f 83 b1 99 = v10
$w38 = w37 \oplus w34 = c5 d5 4a 6e$	Rcon(10)= 36 00 00 00
w39 = w38 w35 = f9 6b 41 56	y10 ⊕ Rcon(10)= 49 83 b1 99 = z10
w40 = w36 \oplus z10 = b4 8e f3 52	
w41 = w40 ⊕ w37 = ba 98 13 4e	
w42 = w41 \oplus w38 = 7f 4d 59 20	
w43 = w42 \oplus w39 = 86 26 18 76	

AES Example Key Expansion

Start of round	After	After	After	Round Key
	SubBytes	ShiftRows	MixColumns	
01 89 fe 76				0f 47 0c af
23 ab dc 54				15 d9 b7 7f
45 cd ba 32				71 e8 ad 67
67 ef 98 10				c9 59 d6 98
0e ce f2 d9	ab 8b 89 35	ab 8b 89 35	b9 94 57 75	dc 95 97 38
36 72 6D 2D	05 40 71 11	40 71 11 05	e4 8e 16 51	90 49 fe 81
34 25 17 55 no b6 40 99	18 31 10 IC	10 IC 18 31	4/ 20 9a 31	3/ df /2 15
40 D0 40 00	44 48 21 C4	1d 76 bp 02	00 22 db 12	d2 49 dc of
74 c7 c8 d0	92 c6 9b 70	40 76 Da es	b2 f2 dc 92	c9 80 7e ff
70 ff e8 2a	51 16 9b e5	9b e5 51 16	df 80 f7 c1	6b b4 c6 d3
75 3f ca 9c	9d 75 74 de	de 9d 75 74	2d c5 le 52	b7 5e 61 c6
5c 6b 05 f4	4a 7f 6b bf	4a 7f 6b bf	bl cl 0b cc	c0 89 57 b1
7b 72 a2 6d	21 40 3a 3c	40 3a 3c 21	ba f3 8b 07	af 2f 51 ae
b4 34 31 12	8d 18 c7 c9	c7 c9 8d 18	f9 1f 6a c3	df 6b ad 7e
9a 9b 7f 94	b8 14 d2 22	22 b8 14 d2	1d 19 24 5c	39 67 06 c0
71 48 5c 7d	a3 52 4a ff	a3 52 4a ff	d4 11 fe 0f	2c a5 f2 43
15 dc da a9	59 86 57 d3	86 57 d3 59	3b 44 06 73	5c 73 22 8c
26 74 c7 bd	f7 92 c6 7a	c6 7a f7 92	cb ab 62 37	65 0e a3 dd
24 7e 22 9c	36 f3 93 de	de 36 f3 93	19 b7 07 ec	fl 96 90 50
f8 b4 0c 4c	41 8d fe 29	41 8d fe 29	2a 47 c4 48	58 fd 0f 4c
67 37 24 ff	85 9a 36 16	9a 36 16 85	83 e8 18 ba	9d ee cc 40
ae a5 c1 ea	e4 06 78 87	78 87 e4 06	84 18 27 23	36 38 9b 46
e8 21 97 bc	9b fd 88 65	65 9b fd 88	eb 10 0a f3	eb 7d ed bd
72 ba cb 04	40 f4 1f f2	40 f4 lf f2	75 05 42 4a	71 8C 83 Cf
10 06 04 IA	72 61 48 20	6I 48 20 72	1e du 20 40	C/ 29 e5 a5
D2 20 DC 65	63 30 94 2f	05 40 37 D7 2f 63 3c 94	94 03 10 52 94 c4 43 fb	4C 74 er as
00 60 67 46	67 57 79 97	67 97 78 97	94 C4 43 ID	27 bb 38 f7
d9 f9 c5 e5	35 99 a6 d9	99 a6 d9 35	0c 50 53 c7	14 3d d8 7d
d8 f7 f7 fb	61 68 68 Of	68 Of 61 68	3b d7 00 ef	93 e7 08 al
56 7b 11 14	b1 21 82 fa	fa b1 21 82	b7 22 72 e0	48 f7 a5 4a
db al f8 77	b9 32 41 f5	b9 32 41 f5	bl la 44 17	48 f3 cb 3c
18 6d 8b ba	ad 3c 3d f4	3c 3d f4 ad	3d 2f ec b6	26 1b c3 be
a8 30 08 4e	c2 04 30 2f	30 2f c2 04	0a 6b 2f 42	45 a2 aa 0b
ff d5 d7 aa	16 03 0e ac	ac 16 03 0e	9f 68 f3 b1	20 d7 72 38
f9 e9 8f 2b	99 le 73 fl	99 le 73 fl	31 30 3a c2	fd 0e c5 f9
1b 34 2f 08	af 18 15 30	18 15 30 af	ac 71 8c c4	0d 16 d5 6b
4f c9 85 49	84 dd 97 3b	97 3b 84 dd	46 65 48 eb	42 e0 4a 41
bf bf 81 89	08 08 0c a7	a7 08 08 0c	6a 1c 31 62	cb 1c 6e 56
cc 3e ff 3b	4b b2 16 e2	4b b2 16 e2	4b 86 8a 36	b4 8e f3 52
al 67 59 af	32 85 cb 79	85 cb 79 32	b1 cb 27 5a	ba 98 13 4e
04 85 02 aa	12 97 77 ac	77 ac f2 97	fb f2 f2 af	7f 4d 59 20
a1 00 51 34	32 63 CT 18	18 32 63 Cf	cc 5a 5b cf	86 26 18 76
TT 08 69 64				
0D 53 34 14 94 bf ab 95				
4a 7c 43 b9				· · · · · · · · · · · · · · · · · · ·
20 10 10 00				

AES Example Encryption

Round		Number of bits that differ
	0123456789abcdeffedcba9876543210	1
	0023456789abcdeffedcba9876543210	
0	0e3634aece7225b6f26b174ed92b5588	1
	0f3634aece7225b6f26b174ed92b5588	
1	657470750fc7ff3fc0e8e8ca4dd02a9c	20
	c4a9ad090fc7ff3fc0e8e8ca4dd02a9c	
2	5c7bb49a6b72349b05a2317ff46d1294	58
	fe2ae569f7ee8bb8c1f5a2bb37ef53d5	
3	7115262448dc747e5cdac7227da9bd9c	59
	ec093dfb7c45343d689017507d485e62	
4	f867aee8b437a5210c24c1974cffeabc	61
	43efdb697244df808e8d9364ee0ae6f5	
5	721eb200ba06206dcbd4bce704fa654e	68
	7b28a5d5ed643287e006c099bb375302	
6	0ad9d85689f9f77bc1c5f71185e5fb14	64
	3bc2d8b6798d8ac4fe36a1d891ac181a	
7	db18a8ffa16d30d5f88b08d777ba4eaa	67
	9fb8b5452023c70280e5c4bb9e555a4b	
8	f91b4fbfe934c9bf8f2f85812b084989	65
	20264e1126b219aef7feb3f9b2d6de40	
9	cca104a13e678500ff59025f3bafaa34	61
	b56a0341b2290ba7dfdfbddcd8578205	
10	ff0b844a0853bf7c6934ab4364148fb9	58
	612b89398d0600cde116227ce72433f0	

AES Example Avalanche

AES Decryption

- AES decryption is not identical to encryption since steps done in reverse
- but can define an equivalent inverse cipher with steps as for encryption
 - but using inverses of each step
 - with a different key schedule
- works since result is unchanged when
 - swap byte substitution & shift rows
 - swap mix columns & add (tweaked) round key

AES Decryption

Implementation Aspects

- can efficiently implement on 8-bit CPU
 - byte substitution works on bytes using a table of 256 entries
 - shift rows is simple byte shift
 - add round key works on byte XOR's
 - mix columns requires matrix multiply in GF(2⁸) which works on byte values, can be simplified to use table lookups & byte XOR's

Implementation Aspects

- can efficiently implement on 32-bit CPU
 - redefine steps to use 32-bit words
 - can precompute 4 tables of 256-words
 - then each column in each round can be computed using 4 table lookups + 4 XORs
- designers believe this very efficient implementation was a key factor in its selection as the AES cipher

Summary

- have considered:
 - the AES selection process
 - the details of Rijndael the AES cipher
 - looked at the steps in each round
 - the key expansion
 - implementation aspects