
Computer Security
and Cryptography

CS381

来学嘉
计算机科学与工程系 电院3-423室

34205440 1356 4100825 laix@sjtu.edu.cn

2015-05

演示者
演示文稿备注
Lecture slides by Lawrie Brown for “Cryptography and Network Security”, 4/e, by William Stallings, Chapter 1 “Introduction”.

Organization

• Week 1 to week 16 (2015-03 to 2014-06)
• 东中院-3-102
• Monday 3-4节; week 9-16
• Wednesday 3-4节; week 1-16
• lecture 10 + exercise 40 + random tests 40 + other 10
• Ask questions in class – counted as points
• Turn ON your mobile phone (after lecture)
• Slides and papers:

– http://202.120.38.185/CS381
• computer-security

– http://202.120.38.185/references
• TA: Geshi Huang gracehgs@mail.sjtu.edu.cn
• Send homework to the TA

Rule: do the homework on your own!

2

Contents
• Introduction -- What is security?
• Cryptography

– Classical ciphers
– Today’s ciphers
– Public-key cryptography
– Hash functions and MAC
– Authentication protocols

• Applications
– Digital certificates
– Secure email
– Internet security, e-banking

• Computer and network security
– Access control
– Malware
– Firewall

• Examples: Flame, Router, BitCoin ??

3

4
4

Authentication

• Authentication
– The provision of assurance of the

claimed identity of an entity. [ISO]
• One of 2 main goals of cryptography:

– Authenticity: "who wrote the data"
– Confidentiality: "who can read the data"

5
5

Components of Authentication
system: set of users, protocols

1. Claim identity: Alice
2. Submit authentication data by A

• A→B: M
3. Verification by B

• M ∈{ MA, …} ?
4. Conclusion of B

• accept, reject

☆

6
6

Authentic message
• Set of system users: U={A,B,…}
• Authentic messages: {MA, A ∊U}

– Only legitimate users can have generated the message
– MA= (fA(X),X),

• fA : keyed 1-way function with A’s secret key, e.g., MAC, cipher,
signature.

• Verification: check the correctness of fA(X).
• Conclusion: after B verifying M∈{ MA, A∈U} ,

– If f is cipher or MAC, then U={A,B}, B accepts A
because B didn’t produce M.

– If f is signature, U={A}.
– B accepts A:

• A produced the message (authentic)
• A has sent the message (freshness) ??

☆

Authentic message: MAC

• MAC - shared secrete key k
– Send: M, CK(M) //
– verify computed CK(M) = received CK(M)

• Security of MAC:
– If the key k is unknown, it is difficult to find a

new message with a valid MAC, even if many
valid (M,Ck(M)) are known.

• Only users knowing the key can generate and
verify the MAC. (symmetric)

☆

8

digital signature

• RSA
– Parameters PK={e,n} , SK={d,p,q}

– only Alice can generate S (asymmetric)
• ElGamal Signature

– Alice: pri-key xa; pub-key ya=gxa

– Bob: pri-key xb: pub-key yb=gxb

– Signing
• Alice random r, gcd(r, p−1)=1, and gets R=gr

– Send: (m, R=gr, S=r-1(m− xaR) (mod p−1))
– Verification: gm=ya

RRS (mod p)

Alice
S ≡ H(M)dA (mod nA)

(M,S) Bob
H(M) ? ≡ SeA (mod nA)

☆

Digital Signature Algorithm (DSA)

• NIST Digital Signature Standard (DSS)，FIPS 186 (1991)
• 320-bit signature; with 512-1024 bit security
• signature only, variant of ElGamal & Schnorr schemes

• system public key (p,q,g):

– large prime p (512-1024 bits) ; Small prime q (160 bits), q (p-1)
– g = h(p-1)/q , 1<h<p-1, h(p-1)/q mod p > 1

• Users: private key x<q,public key: y = gx mod p
Sign: one-time random signature key k, k<q
r = (gk mod p)mod q

s = [k-1(H(M)+ xr)] mod q
• Send:(M,r,s)
• verification

u1= [H(M) s-1]mod q ; u2= (r s-1)mod q

verify r = [(gu1 yu2)mod p]mod q

演示者
演示文稿备注
DSA typically uses a common set of global parameters (p,q,g) for a community of clients, as shown. Then each DSA uses chooses a random private key x, and computes their public key as shown. The calculation of the public key y given x is relatively straightforward. However, given the public key y, it is computationally infeasible to determine x, which is the discrete logarithm of y to base g, mod p.

different signatures

• Blind signature : content of a message is unknown to the
signer. publicly verifiable.
– Untraceable ----voting systems and digital cash

• Undeniable signatures: signer can choose who is allowed to
verify

• Group signature: a member of a group to sign a message on
behalf of the group anonymously.
– Ring signature： without group manager

• Threshold signature：Need >t members to sign.
• Proxy signature : signer can delegate the signing power to a proxy

(short period)
• Attribute signature –signing power varies according to

identity-role……

User Signer
Message m, random r
blinding mre 
  sign(mre)d
Message sig md

Authentication protocols

•Protocol: A series of specified actions taken by
specified 2 or more entities.

A protocol specifies how to use cryptographic
primitives (encryption, signature…) to provide security
services (ex. authentication)

11

12
12

Security
Name example

applications Email, payment, PGP, VPN,

services Confidentiality, authenticity, integrity, non-repudiation,
access control

Protocols DH, SSL, SSH, IPSEC, Kerbros, secret-sharing, ID-
based..,

Mechanisms
(standards)

Encryption, signature, authentication, key-exchange,
non-repudiation

Primitives Encryption, signature, hash, MAC, RNG,

algorithms DES, AES, RSA, DH, MD5, SHA, ElGamal,

theory Math, IT, Number theory, cryptography, complexity

☆

13
13

Example 1 - password

• Password
– (A→B): Id=Alice
– (B→A): proof?
– (A→B): (password)
– B: check (password)=stored password ?

If yes, accept A as Alice.
• Attack by replay

– If enemy intercepted the password, he can
reuse it to pretend to be Alice

14

Freshness mechanisms

• Authenticity checking is not enough - also need
means of checking ‘freshness’ of authentic
messages, to protect against replays.

• Two main methods:
– use of time-stamps (clock-based or ‘logical’

time-stamps),
– use of ‘nonces’ or challenges (as in challenge-

response protocols).

☆

演示者
演示文稿备注
As we have already briefly noted, providing origin and integrity checking for protocol messages is not all that is required. We also need a means of checking the ‘freshness’ of protocol messages to protect against replays of messages from previous valid exchanges.
There are two main methods of providing freshness checking:
 the use of time-stamps (either clock-based or ‘logical’ time-stamps),
 the use of nonces or challenges (as in the challenge-response protocols employed for user authentication).
We consider these two approaches in turn.

15

Example 2. use time-stamp & encryption)

B A
M1 = Text2||eKAB(TA||B||Text1)

Clause 5.1.1 of ISO/IEC 9798-2.
•use time-stamps TA for freshness
•eKAB encryption with shared key KAB for origin and integrity
checking.
•provides unilateral authentication (B can check A’s identity,
but not vice versa).

•Requires securely synchronised clocks; Non-trivial to provide
such clocks
•need time acceptance ‘window’ because of clock variations and
delays.
•Acceptance window allows for undetectable replays - hence
need to store a log of recently received messages.

☆

演示者
演示文稿备注
This example can be found in clause 5.1.1 of ISO/IEC 9798-2. It is based on the use of time-stamps (for freshness) and encryption (for origin and integrity checking). It provides unilateral authentication (B can check A’s identity, but not vice versa).
In the message description we use the following notation:
 x || y denotes the concatenation of data items x and y
 Text1 and Text2 are data strings, whose use will depend on the application of the protocol
 KAB denotes a secret key shared by A and B
 eKAB denotes encryption using the shared secret key KAB
 TA denotes a time-stamp generated by A (note that TA could be replaced by a sequence number, i.e. a logical time-stamp).
When B receives the message from A, B deciphers the enciphered string. B checks three things:
 that the deciphered message ‘makes sense’ (has the appropriate redundancy),
 that the time-stamp is within its current window (and, using its ‘log’, that a similar message has not recently been received),
 that B’s name is correctly included.
If all three checks are correct, then B accepts A as valid.

16

Logical time - counter

• A authenticate to B:
– A maintains counter NA, and B has NB,

• A sends B : f(N), (N>NA) and set NA=N.
• B check

– f(N) is authentic; and:
– if N > NB then B accept, and set NB=N,
– if N ≤ NB then the message is rejected.

☆

演示者
演示文稿备注
One alternative to the use of clocks is for every pair of communicating entities to store a pair of sequence numbers, which are used only in communications between that pair. For example, for communications between A and B, A must maintain two counters: NAB and NBA (B will also need to maintain two counters for A).
Every time A sends B a message, the value of NAB is included in the message, and at the same time NAB is incremented by A.

17
17

Example 3: e-banking

Bank check
 acc. number
 Password
 the numbers stored

•require synchronization,
thus only suitable in well-
managed systems.

User input:
 acc. number
 Password
 list number

Then remove the
number from the list

☆

电子银行口令卡

图1 中国工商银行的电子银行口令卡

中国工商银行、中国建设银行的电子口令卡的使用次数、支付限额

 是否有
口令卡

使用次
数

借记卡支付限
额 信用卡支付限额

中国工
商银行 √ 1000次

单 笔：1000元
日累计：5000

元

单 笔：1000元与信用卡本身限额
相比低者

日累计：5000元与信用卡本身限
额相比低者

• use 2 numbers each
time (A1,C8)

• 80X79/4 choices

19
19

Example 4: time – secureID
User supply:

Acc. number
Password
SecureID number

Bank check
 acc. Number
 Password
 the numbers
 computed from
 local time

•SID=h(userID,key,T0)
•T0 ∈[T0-a,T0+b]

One-time password, change every 60 sec.

Who you are
What you know
What you have

☆

20
20

Example 4: nonces – secureID
User supply:

Acc. number
Password
SecureID number

Bank check
 acc. Number
 Password
 the numbers stored

•SID=h(userID,key,N) N>N0

Hash, AES

One-time password, change every 60 sec.

Who you are
What you know
What you have

☆

21

Example 4: nonces–challenge/response

Who you are --- name/account number
What you know --- password
What you have --- device generating valid response

☆

22
22

2 basic elements in authentication
protocols

• Authentic message
– a message that the receiver can verify that it

can only be originated by the sender.
• Freshness of the authentic message:

– To prevent “replay” attack by using the
previously used authentic message.

☆

23

Example 5 (nonce & integrity mechanism)

B A
M1 = RB||Text1

M2 = Text3||fKAB(RB||B||Text2)

clause 5.1.2 of ISO/IEC 9798-4.
•use of nonces RB (for freshness) and MAC for origin
and integrity checking.
It provides unilateral authentication (B can check A’s
identity)

fKAB denotes a cryptographic check (MAC) function with
shared key KAB

This is a challenge-response protocol

演示者
演示文稿备注
This example can be found in clause 5.1.2 of ISO/IEC 9798-4. It is based on the use of nonces (for freshness) and a data integrity mechanism (for origin and integrity checking). It provides unilateral authentication (B can check A’s identity, but not vice versa).
In the message descriptions we use the following notation (in addition to that defined for the first example):
 Text1, Text2 and Text3 are data strings, whose use will depend on the application of the protocol
 fKAB denotes a cryptographic check value (the output of a data integrity mechanism) computed using the shared secret key KAB
 RB denotes a random nonce generated by B.
When B sends the message M1, B stores the nonce RB. When B receives message M2, B first assembles the string RB||B||Text2 and then computes fKAB(RB||B||Text2), using the shared secret KAB. B checks one thing:
 that the newly computed check value agrees with the one in message M2,
If the check is correct, then B accepts A as valid.
Note that, in order for B to perform the desired check, B must have the means to obtain the data string ‘Text2’. One possibility is that Text3 contains a copy of Text2, perhaps in an enciphered form. Another possibility is that B can predict what this string looks like in advance.

24

Example 6 (nonce & encryption)

B A

M1 = RB||Text1

M2 = Text3||eKAB(RA||RB||B||Text2)

M3 = Text5||eKAB(RB||RA||Text4)

clause 5.2.2 of ISO/IEC 9798-2.
use nonces (for freshness) and encryption (for origin and
integrity checking).
It provides mutual authentication

演示者
演示文稿备注
This example can be found in clause 5.2.2 of ISO/IEC 9798-2. It is based on the use of nonces (for freshness) and encryption (for origin and integrity checking). It provides mutual authentication (B can check A’s identity and vice versa).
In the message descriptions we use the following notation (in addition to that defined for previous examples):
 Text1-Text5 are data strings, whose use will depend on the application of the protocol
 RA and RB denote random nonces generated by A and B respectively.
When B sends the message M1, B stores the nonce RB. When A sends the message M2, A stores the nonces RA and RB. When B receives M2, B deciphers the enciphered string and checks three things:
 that the deciphered message ‘makes sense’ (has the appropriate redundancy),
 that the nonce it includes is the one B sent in message M1,
 that B’s name is correctly included.
If all three checks are correct, then B accepts A as valid, and sends M3. When A receives M3, A deciphers the enciphered string and checks two things:
 that the deciphered message ‘makes sense’ (has the appropriate redundancy),
 that the nonces it includes are the expected ones.
If both checks are correct, then A accepts B as valid.

25
25

Model

• 3 parties: Alice, Bob and Enemy
• All communication between A and B are under the

control of Enemy (read, relay, modify, insert)
• Assumption: crypto-algorithms (cipher, MAC,

hash..) used in the protocols are secure, so we
concentrate on protocol.

• Protocol: A series of specified actions taken by
specified 2 or more entities.

Alice Enemy Bob

Model for authentication.

☆

26
26

Examples

• Password. (A→B): (Alice, password)
– Enemy can replay the message.

• Timestamp. ((A→B)-authentic message)time
– require universal clock

• Serial number. n-th message is ((A→B)-authentic
message)n
– require synchronization

• Random number (nonces)
– challenge B→A: C
– response A→B: f(C)

☆

27

Key-Exchange protocol

• In most cases, only authentication is not enough.
• it is often used to establish a shared key (“session key”)
• this session key is used to protect the real application.
• Security requirements

1. Authenticity: they both know who the other party is
2. Secrecy: only they know the resultant shared key
Also crucial (yet easy to overlook):
3. Consistency: if two honest parties establish a common session key then

both have a consistent view of who the peers to the session are

A: (B,K) and B: (x,K)  x=A

One description of secure key exchange protocol [Krawczyk]

☆

28

Key management standards

• ISO SC27 generic Key management standard:
11770.

• US banking community - ANSI X9.17, X9.24, 9.28,
X9.30, X9.31.

• ISO TC68, banking standards committee for ISO,
leading to ISO 8732 (≈ X9.17), ISO 11568, ISO
11649 (≈ X9.28) and ISO 11166 (≈ X9.30/9.31).

• IEEE P1363.2 (Specifications for Password-based
Public Key Cryptographic Techniques, used in ISO
11770-4)

• Note: Key management is the most difficult part in
use of cryptography

演示者
演示文稿备注
The earliest key management standards work was started in the early 1980s by the ANSI banking standards community. It has resulted in a series of important banking key management standards (e.g. X9.17-1985, X9.24, X9.28, X9.30 and X9.31).
This work was then taken up by ISO TC68, the banking standards committee for ISO, and has resulted in a series of parallel ISO standards, e.g. ISO 8732 for wholesale key management (based on X9.17), ISO 11568 for retail key management, ISO 11649 (based on X9.28), and ISO 11166 (a multi-part standard covering key management using asymmetric algorithms completed in 1994, and related to X9.30 and X9.31).
More recently SC27 has developed a generic key management multi-part standard: ISO/IEC 11770.
In 1993 there were some serious disputes between ISO TC68 and ISO/IEC SC27/WG2 over incompatibilities between final drafts of ISO 11166 and a CD draft of ISO/IEC 11770-3. These were resolved by the two groups ‘agreeing to differ’.

29

 Diffie-Hellman Key Agreement

Alice

Choose a
Compute ga mod p

Parameters: p, g

Bob

Choose b
Compute gb mod p

ga mod p

gb mod p

Compute gab mod p

Compute gab mod p

W.Diffie and M.E.Hellman, “New Directions in
Cryptography”, IEEE Transaction on Information Theory,
V.IT-22.No.6, Nov 1976, PP.644-654

gab is the secrete key shared by Alice and Bob

☆

30

Man-in-the middle attack

Eve
Choose e

Compute ge mod p

Alice

Choose a
Compute ga mod p

Parameters: p, g

Bob

Choose b
Compute gb mod p

(1) ga mod p

(2) gb mod p

Compute gbe mod p

(1)’ ge mod p(2)’ ge mod p

(1) ga mod p

(2) gb mod p

Compute gae mod p

Compute gae mod p, gae mod p,

DH provide no authentication,
is also called anonymous key agreement

gbe

31

ISO 11770-2 mechanism 6

B A

M1 = RB||Text1

M2 = Text3||eKAB(RA||RB||B||FA||Text2)

M3 = Text5||eKAB(RB||RA||FB||Text4)

• A,B share KAB (master key)
• RA and RB denote nonces, and FA and FB are keying material.
• The key K established between A and B is a non-invertible

function of FA and FB.
clause 5.2.2 of ISO/IEC 9798-2. It provides mutual authentication

演示者
演示文稿备注
This example can be found in clause 5.2.2 of ISO/IEC 9798-2. It is based on the use of nonces (for freshness) and encryption (for origin and integrity checking). It provides mutual authentication (B can check A’s identity and vice versa).
In the message descriptions we use the following notation (in addition to that defined for previous examples):
 Text1-Text5 are data strings, whose use will depend on the application of the protocol
 RA and RB denote random nonces generated by A and B respectively.
When B sends the message M1, B stores the nonce RB. When A sends the message M2, A stores the nonces RA and RB. When B receives M2, B deciphers the enciphered string and checks three things:
 that the deciphered message ‘makes sense’ (has the appropriate redundancy),
 that the nonce it includes is the one B sent in message M1,
 that B’s name is correctly included.
If all three checks are correct, then B accepts A as valid, and sends M3. When A receives M3, A deciphers the enciphered string and checks two things:
 that the deciphered message ‘makes sense’ (has the appropriate redundancy),
 that the nonces it includes are the expected ones.
If both checks are correct, then A accepts B as valid.

ISO 11770-3: Key transport mechanism 6

KTA1 = EB (A||KA ||rA ||Text1)||Text2
KTB1 = EA (B||KB ||rA ||rB ||Text3)||Text4
KTA2 = rB ||Text5.

• Use public-key
• mutual authentication and

implicit key authentication
• mutual key confirmation
• known as COMSET
• based on zero-knowledge

techniques (clause 9.1 in
9798-5).

KTA1

KTB1

KTA2

Key and Entity
Confirmation

(A2.1)

Key Token
Response

(A2.2)

Key Token
Construction

(B1)

Key Token
Construction

(A1)

Key and Entity
Confirmation

(B2)

A B

KA

KB

KB

KA

Properties of ZK Proofs

Properties of ZK Proofs:
– completeness

 prover who knows the secret convinces the
verifier with overwhelming probability (always accept)

– soundness (is a proof of knowledge)
 no one who doesn’t know the secret can convince the
verifier with non-negligible probability (random guess, p=2-t)

– zero knowledge
the proof does not leak any additional information (verifier

can simulate the protocol)

Fiat-Shamir ZK protocol

Fiat-Shamir ID protocol (ZK Proof of knowledge of square root
modulo n)

• System parameter: n=pq,
• Private authenticator: s
• Public identity: v = s2 mod n
• Protocol (repeat t times)
1. A: picks random r in Zn*, sends x=r2 mod n to B
2. B checks x≠0 and sends random c in {0,1} to A
3. A sends y to B, where If c=0, y=r, else y=rs mod n.
4. B accept if y2≡xvc mod n

Properties of ZK Proofs

• completeness
 honest prover who knows the secret convinces the
verifier with overwhelming probability (always accept)

• soundness (is a proof of knowledge)
 no one who doesn’t know the secret can convince the
verifier with non-negligible probability (random guess, p=2-t).

Correct answers to both 0 and 1 implies knowing s.
• zero knowledge

the proof does not leak any additional information (verifier
can simulate the protocol):

– Repeat the following: pick random c∈{0,1},
• if c=0, pick random r and outputs (r2, 0, r)
• if c=1, pick random y, and outputs (y2v-1, 1, y)

ZK Proofs

probability of forgery: 1/2t

soundness (proof of knowledge):
– if A can successfully answer two challenges d1

and d2, i.e., A can output D1 and D2 such that
W=gD1Gd1=gD2Gd2, then gD1-D2=Gd2-d1 and thus
the secret Q=(D1-D2)(d2-d1)-1 mod q

zero knowledge (the proof does not leak any
additional information):

Pick a random d, random D, let W=GdgD,
Outputs (W, d, D)

Key management with a
trusted third party

• Beside the 2-party protocols, we can use a
trusted third party (TTP) to exchange keys

• Ex. a trusted Key Distribution Center (KDC)
– each party shares own master key with KDC
– KDC generates session keys used for

connections between parties
– master keys used to distribute these to them

演示者
演示文稿备注
A two-level hierarchy of symmetric encryption keys can be used to provide confidentiality for communication in a distributed environment.
Usually involves the use of a trusted key distribution center (KDC). Each party in the network shares a secret master key with the KDC. The KDC is responsible for generating session keys, and for distributing those keys to the parties involved, using the master keys to protect these session keys.

(1) C → AS: IDC || PC || IDV
(2) AS → C: Ticket
(3) C → V : IDC || Ticket

Ticket=EKV

[IDC||ADC|| IDV]

C : client
AS : Authentication Server
V : server
IDC : identifier of user on C

IDV : identifier of V
PC : password of user on C
ADC : network address of C
KV : secret key shared between
AS and server V

C V

AS
(1)

(2)

(3)

Denning AS Protocol

Key management and password

• Cryptographic keys are formed as binary digits
– Symmetric: 128-bit
– RSA,DL: 1024, 2048,.., bits
– Elliptic curve: 256, 512,...,bits

• Human uses memorized password
– 4-digit numbers
– Text password
– Pass phrases

• Vulnerable to brute-force attacks (guess, dictionary attack)
• Protection methods: policy, slow hash, restrict verification

trials, CAPTCHA,…

CAPTCHA

• CAPTCHA (Completely Automated Public
Turing Test to Tell Computers and Humans
Apart)
– a type of challenge-response test used in

computing to ensure that the response is not
generated by a computer.

– A common type of CAPTCHA requires that
the user type the letters or digits of a distorted
image that appears on the screen.

• 验证码

Secure use of password

• A: Password π, verifier B knows k=H(π)
• A sends ek(data) to B, B check ek(data) .

– Brute-force attack: guess π’, check ek’(data)
– Could be easier than breaking the cipher.

• Solution
– B generates a public key pB, send to A.
– A send epB(π, nonce) to B
– Brute-force attack becomes difficult (need to break

the public-key cipher)

• ISO 11770-4, IEEE P1363.2

Summary

• Authentication protocols
– Authentic messages

• MAC
• signatures Math

– Freshness mechanisms
• Time / counter / Challenge-response

• Key-management
– Protocols
– password

• Next lecture: Kerberos, PKI

演示者
演示文稿备注
Chapter 8 summary.

	Computer Security �and Cryptography��CS381
	Organization
	Contents
	Authentication
	Components of Authentication
	Authentic message
	Authentic message: MAC
	digital signature
	Digital Signature Algorithm (DSA)
	different signatures
	Authentication protocols
	Security
	Example 1 - password
	Freshness mechanisms
	Example 2. use time-stamp & encryption)
	Logical time - counter
	Example 3: e-banking
	电子银行口令卡
	Example 4: time – secureID
	Example 4: nonces – secureID
	Example 4: nonces–challenge/response
	2 basic elements in authentication protocols
	Example 5 (nonce & integrity mechanism)
	Example 6 (nonce & encryption)
	Model
	Examples
	Key-Exchange protocol
	Key management standards
	 Diffie-Hellman Key Agreement
	Man-in-the middle attack
	ISO 11770-2 mechanism 6
	ISO 11770-3: Key transport mechanism 6
	Properties of ZK Proofs
	Fiat-Shamir ZK protocol
	Properties of ZK Proofs
	ZK Proofs
	Key management with a �trusted third party
	幻灯片编号 38
	Key management and password
	CAPTCHA
	Secure use of password
	Summary

