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Chapter 4. Paths in graphs



Distances

DFS does not necessarily find the shortest paths.

Definition
The distance between two nodes is the length of the shortest path between
them.



Breadth-first search



The algorithm

bfs(G , s)
Input: Graph G = (V ,E), directed or undirected; vertex s ∈ V
Output: For all vertices u reachable from s, dist(u) is set

to the distance from s to u.

1. for all u ∈ V do
2. dist(u) =∞
3. dist(s) = 0
4. Q = [s] (queue containing just s)
5. while Q is not empty do
6. u = eject(Q)
7. for all edge (u, v) ∈ E do
8. if dist(v) =∞ then
9. inject(Q, v)

10. dist(v) = dist(u) + 1



Correctness and efficiency

Lemma
For each d = 0, 1, 2, . . ., there is a moment at which (1) all nodes at distance
≤ d from s have their distances correctly set; (2) all other nodes have their
distances set to ∞; and (3) the queue contains exactly the nodes at distance d.

Lemma
BFS has a running time of O(|V |+ |E |).



Lengths on edges

BFS treats all edges as having the same length, which is rarely true in
applications where shortest paths are to be found.

Every edge e ∈ E with a length `e .
If e = (u, v), we will sometimes also write

`(u, v) or `uv .



Dijkstra’s algorithm



An adaption of breadth-first search

BFS finds shortest paths in any graph whose edges have unit length. Can we
adapt it to a more general graph G = (V ,E) whose edge lengths `e are
positive integers?

A simple trick:

For any edge e = (u, v) of E, replace it by `e edges of length 1, by
adding `e − 1 dummy nodes between u and v.

It might take time

O

(
|V |+

∑
e∈E

`e

)
,

which is bad in case we have edges with long length.



Alarm clocks

I Set an alarm clock for node s at time 0.

I Repeat until there are no more alarms:
Say the next alarm goes off at time T , for node y . Then:

I The distance from s to u is T .
I For each neighbor v of u in G :

I If there is no alarm yet for v , set one for time T + `(u, v).
I If v ’s alarm is set for later than T + `(u, v), then reset it to this earlier time.



Priority queue

Priority queue is a data structure usually implemented by heap.

I Insert. Add a new element to the set.

I Decrease-key. Accommodate the decrease in key value of a particular
element.

I Delete-min. Return the element with the smallest key, and remove it from
the set.

I Make-queue. Build a priority queue out of the given elements, with the
given key values. (In many implementations, this is significantly faster
than inserting the elements one by one.)



Dijkstra’s shortest-path algorithm

dijkstra(G , `, s)
Input: Graph G = (V ,E), directed or undirected;

positive edge length {`e | e ∈ E}; vertex s ∈ V
Output: For all vertices u reachable from s, dist(u) is set

to the distance from s to u.

1. for all u ∈ V do
2. dist(u) =∞
3. prev(u) = nil

4. dist(s) = 0
5. H = makequeue(V ) (using dist-values as keys)
6. while H is not empty do
7. u = deletemin(H)
8. for all edge (u, v) ∈ E do
9. if dist(v) > dist(u) + `(u, v) then

10. dist(v) = dist(u) + `(u, v)
11. prev(v) = u
12. decreasekey(H, v)



An alternative derivation

1. Initialize dist(s) = 0, other dist(·) to ∞
2. R = { } (the “known region”)
3. while R 6= V do
4. Pick the node v /∈ R with smallest dist(·)
5. Add v to R
6. for all edge (v , z) ∈ E do
7. if dist(z) > dist(v) + `(v , z) then
8. dist(z) = dist(v) + `(v , z)



Key property

At the end of each iteration of the while loop, the following conditions hold:

(1) there is a value d such that all nodes in R are at distance ≤ d from s and
all nodes outside R are at distance ≥ d from s;

(2) for every node u, the value dist(u) is the length of the shortest path from
s to u whose intermediate nodes are constrained to be in R (if no such
path exists, the value is ∞).



Running time

Since makequeue takes at most as long as |V | insert operations, we get a
total of |V | deletemin and |V |+ |E | insert/decreasekey operations.

The time needed for these varies by implementation; for instance, a binary heap
gives an overall running time of

O((|V |+ |E |) log |V |).



Which heap is best?

Implementation deletemin insert/ |V | × deletemin+
decreasekey (|V |+ |E |)× insert

Array O(|V |) O(1) O(|V |2)

Binary heap O(log |V |) O(log |V |) O((|V |+ |E |) log |V |)
d-ary heap O( d log |V |

log d
) O( log |V |

log d
) O( (d|V |+|E |) log |V |

log d
)

Fibonacci heap O(log |V |) O(1) (amortized) O(|V | log |V |+ |E |)



Priority queue implementations



Array

The simplest implementation of a priority queue is as an unordered array of key
values for all potential elements (the vertices of the graph, in the case of
Dijkstra’s algorithm).

Initially, these values are set to ∞.

An insert or decreasekey is fast, because it just involves adjusting a key
value, an O(1) operation.

To deletemin, on the other hand, requires a linear-time scan of the list.



Binary heap

Here elements are stored in a complete binary tree.

In addition, a special ordering constraint is enforced:

the key value of any node of the tree is less than or equal to that of
its children.

In particular, therefore, the root always contains the smallest element.

To insert, place the new element at the bottom of the tree (in the first
available position), and let it “bubble up.”
The number of swaps is at most the height of the tree blog2 nc, when there are
n elements.

A decreasekey is similar, except the element is already in the tree, so we let it
bubble up from its current position.

To deletemin, return the root value.
To then remove this element from the heap, take the last node in the tree (in
the rightmost position in the bottom row) and place it at the root.
Then let it “sift down.” Again this takes O(log n) time.



d-ary heap

A d-ary heap is identical to a binary heap, except that nodes have d children.

This reduces the height of a tree with n elements to

Θ(logd n) = Θ((log n)/(log d))

Inserts are therefore speeded up by a factor of Θ(log d).
Deletemin operations, however, take a little longer, namely O(d logd n).



Shortest paths in the presence of negative edges



Negative edges

Dijkstra’s algorithm works in part because the shortest path from the starting
point s to any node v must pass exclusively through nodes that are closer than
v.

This no longer holds when edge lengths can be negative.

What needs to be changed in order to accommodate this new complication?
A crucial invariant of Dijkstra’s algorithm is that the dist values it maintains
are always either overestimates or exactly correct.

They start off at ∞, and the only way they ever change is by updating along an
edge:

update((u, v) ∈ E)

dist(v) = min{dist(v), dist(u) + `(u, v)}
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Update

update((u, v) ∈ E)

dist(v) = min{dist(v), dist(u) + `(u, v)}

1. It gives the correct distance to v in the particular case where u is the
second-last node in the shortest path to v , and dist(u) is correctly set.

2. It will never make dist(v) too small, and in this sense it is safe. For
instance, a slew of extraneous update’s can’t hurt.

Let
s → u1 → u2 → u3 → · · · → uk → t

be a shortest path from s to t.
This path can have at most |V | − 1 edges (why?). If the sequence of updates
performed includes (s, u1), (u1, u2), . . . , (uk , t), in that order (though not
necessarily consecutively), then by 1 the distance to t will be correctly
computed.
It doesn’t matter what other updates occur on these edges, or what happens in
the rest of the graph, because updates are safe.
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Bellman-Ford algorithm

But still, if we don’t know all the shortest paths beforehand, how can we be
sure to update the right edges in the right order?
We simply update all the edges, |V | − 1 times!

shortest-paths(G , `, s)
Input: Graph G = (V ,E);

edge lengths {`e | e ∈ E
}

with no negative cycles, vertex s ∈ V
Output: For all vertices u reachable from s, dist(u) is set

to the distance from s to u.

1. for all u ∈ V do
2. dist(u) =∞
3. prev(u) = nil

4. dist(s) = 0
5. repeat |V | − 1 times:
6. for all e ∈ E do
7. update(e)

Running time: O(|V | · |E |).
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Negative cycles

If the graph has a negative cycle, then it doesn’t make sense to even ask about
shortest path.

How to detect the existence of negative cycles:

Instead of stopping after |V | − 1 iterations, perform one extra round.
There is a negative cycle if and only if some dist value is reduced during this
final round.
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Shortest paths in dags



There are two subclasses of graphs that automatically exclude the possibility of
negative cycles:

graphs without negative edges, and graphs without cycles.

We already know how to efficiently handle the former. We will now see how the
single-source shortest-path problem can be solved in just linear time on directed
acyclic graphs.

As before, we need to perform a sequence of updates that includes every
shortest path as a subsequence.

In any path of a dag, the vertices appear in increasing linearized order.
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A single-source shortest-path algorithm for directed acyclic graphs

dag-shortest-paths(G , `, s)
Input: Dag G = (V ,E);

edge lengths {`e | e ∈ E
}

, vertex s ∈ V
Output: For all vertices u reachable from s, dist(u) is set

to the distance from s to u.

1. for all u ∈ V do
2. dist(u) =∞
3. prev(u) = nil

4. dist(s) = 0
5. Linearize G
6. for each u ∈ V in linearized order do
7. for all edges (u, v) ∈ E do
8. update(e)

Notice that our scheme doesn’t require edges to be positive.
In particular, we can find longest paths in a dag by the same algorithm: just
negate all edge lengths.
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Notice that our scheme doesn’t require edges to be positive.
In particular, we can find longest paths in a dag by the same algorithm: just
negate all edge lengths.



Chapter 5. Greedy algorithms



Minimum spanning trees



Building a network

Suppose you are asked to network a collection of computers by linking selected
pairs of them.

This translates into a graph problem in which

I nodes are computers,

I undirected edges are potential links, each with a maintenance cost.

The goal is to

I pick enough of these edges that the nodes are connected,

I the total maintenance cost is minimum.
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Properties of the optimal solutions

Lemma (1)

Removing a cycle edge cannot disconnect a graph.

So the solution must be connected and acyclic: undirected graphs of this kind
are called trees. A tree with minimum total weight, is a minimum spanning
tree.

Input: An undirected graph G = (V ,E); edge weights we

Output: A tree T = (V ,E ′) with E ′ ⊆ E that minimizes

weight(T ) =
∑
e∈E ′

we .
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Trees

Lemma (2)

A tree on n nodes has n − 1 edges.

Lemma (3)

Any connected, undirected graph G = (V ,E) with |E | = |V | − 1 is a tree.

Lemma (4)

An undirected graph is a tree if and only if there is a unique path between any
pair of nodes.
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A greedy approach

Kruskal’s minimum spanning tree algorithm starts with the empty graph and
then selects edges from E according to the following rule.

Repeatedly add the next lightest edge that doesn’t produce a cycle.

The correctness of Kruskal’s method follows from a certain cut property.
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The cut property

Lemma (Cut property)

Suppose edges X are part of a minimum spanning tree (MST) of G = (V ,E).
Pick any subset of nodes S for which X does not cross between S and V \ S,
and let e be the lightest edge across this partition. Then

X ∪ {e}

is part of some MST.

A cut is any partition of the vertices into two groups, S and V \ S .

The cut property says that it is always safe to add the lightest edge across any
cut (that is, between a vertex in S and one in V \ S), provided X has no edges
across the cut.



The cut property

Lemma (Cut property)

Suppose edges X are part of a minimum spanning tree (MST) of G = (V ,E).
Pick any subset of nodes S for which X does not cross between S and V \ S,
and let e be the lightest edge across this partition. Then

X ∪ {e}

is part of some MST.

A cut is any partition of the vertices into two groups, S and V \ S .

The cut property says that it is always safe to add the lightest edge across any
cut (that is, between a vertex in S and one in V \ S), provided X has no edges
across the cut.



The cut property

Lemma (Cut property)

Suppose edges X are part of a minimum spanning tree (MST) of G = (V ,E).
Pick any subset of nodes S for which X does not cross between S and V \ S,
and let e be the lightest edge across this partition. Then

X ∪ {e}

is part of some MST.

A cut is any partition of the vertices into two groups, S and V \ S .

The cut property says that it is always safe to add the lightest edge across any
cut (that is, between a vertex in S and one in V \ S), provided X has no edges
across the cut.



The cut property

Lemma (Cut property)

Suppose edges X are part of a minimum spanning tree (MST) of G = (V ,E).
Pick any subset of nodes S for which X does not cross between S and V \ S,
and let e be the lightest edge across this partition. Then

X ∪ {e}

is part of some MST.

A cut is any partition of the vertices into two groups, S and V \ S .

The cut property says that it is always safe to add the lightest edge across any
cut (that is, between a vertex in S and one in V \ S), provided X has no edges
across the cut.



Proof of the cut property

Edges X are part of some MST T ; if the new edge e also happens to be part of
T , then there is nothing to prove.

So assume e is not in T . We will construct a different MST T ′ containing
X ∪ {e} by altering T slightly, changing just one of its edges.

Add edge e to T . Since T is connected, it already has a path between the
endpoints of e, so adding e creates a cycle. This cycle must also have some
other edge e′ across the cut (S ,V \ S).

If we now remove e′

T ′ = T ∪ {e} \ {e′}

which we will show to be a tree.

T ′ is connected by Lemma (1), since e′ is a cycle edge. And it has the same
number of edges as T ; so by Lemmas (2) and (3), it is also a tree.
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Proof of the cut property (cont’d)

T ′ is a minimum spanning tree:

weight(T ′) = weight(T ) + w(e)− w(e′).

Both e and e′ cross between S and V \ S , and e is the lightest edge of this
type. Therefore w(e) ≤ w(e′), and

weight(T ′) ≤ weight(T ).

Since T is an MST, it must be the case that weight(T ′) = weight(T ) and that
T ′ is also an MST.
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Kruskal’s algorithm

kruskal(G ,w)
Input: A connected undirected graph G = (V ,E) with edge weight we

Output: A minimum spanning tree defined by the edges X .

1. for all u ∈ V do
2. makeset(u)
3. X = {}
4. Sort the edges E by weight
5. for all edge {u, v} ∈ E in increasing order of weight do
6. if find(u) 6= find(v) then
7. add edge {u, v} to X
8. union(u, v)

|V | makeset(x) create a singleton set containing x
2 · |E | find(x) find the set that x belongs to
|V | − 1 union(x , y) merge the sets containing x and y



Kruskal’s algorithm

kruskal(G ,w)
Input: A connected undirected graph G = (V ,E) with edge weight we

Output: A minimum spanning tree defined by the edges X .

1. for all u ∈ V do
2. makeset(u)
3. X = {}
4. Sort the edges E by weight
5. for all edge {u, v} ∈ E in increasing order of weight do
6. if find(u) 6= find(v) then
7. add edge {u, v} to X
8. union(u, v)

|V | makeset(x) create a singleton set containing x
2 · |E | find(x) find the set that x belongs to
|V | − 1 union(x , y) merge the sets containing x and y



Kruskal’s algorithm

kruskal(G ,w)
Input: A connected undirected graph G = (V ,E) with edge weight we

Output: A minimum spanning tree defined by the edges X .

1. for all u ∈ V do
2. makeset(u)
3. X = {}
4. Sort the edges E by weight
5. for all edge {u, v} ∈ E in increasing order of weight do
6. if find(u) 6= find(v) then
7. add edge {u, v} to X
8. union(u, v)

|V | makeset(x) create a singleton set containing x
2 · |E | find(x) find the set that x belongs to
|V | − 1 union(x , y) merge the sets containing x and y



A data structure for disjoint sets

Union by rank

We store a set is by a directed tree. Nodes of the tree are elements of the set,
arranged in no particular order, and each has parent pointers that eventually
lead up to the root of the tree.
This root element is a convenient representative, or name, for the set. It is
distinguished from the other elements by the fact that its parent pointer is a
self-loop.

In addition to a parent pointer π, each node also has a rank that, for the time
being, should be interpreted as the height of the subtree hanging from that
node.
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Union by rank

makeset(x)

π(x) = x
rank(x) = 0

find(x)

while x 6= π(x) do x = π(x)
return x

makeset is a constant-time operation.

find follows parent pointers to the root of the tree and therefore takes time
proportional to the height of the tree.

The tree actually gets built via the third operation, union, and so we must
make sure that this procedure keeps trees shallow.
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Union

union(x , y)

rx = find(x)
ry = find(y)
if rx = ry then return
if rank(rx) > rank(ry )

then π(ru) = rx
else

π(rx) = ry
if rank(rx) = rank(ry ) then rank(ry ) = rank(ry ) + 1
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Properties

Lemma (1)

For any non-root x, rank(x) < rank(π(x))

Lemma (2)

Any root node of rank k has least 2k nodes in its tree.

Lemma (3)

If there are n elements overall, there can be at most n/2k nodes of rank k.
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