
Notations, probabilities, functions, etc. — Handout

Yu Yu

June 8, 2015

Let me know there are any typos, errors, etc.

Random variables, values, sets. We use capital letters (e.g. X, Y , A) for random vari-

ables, standard letters (e.g. x, y, a) for values, and calligraphic letters (e.g. X , Y, S) for sets (and
events).

Set and its operations. A set can be defined by enumeration, e.g.,

S def
= {0, 1, 2, 3, 4, . . . , 99}

|S| refers to the cardinality of S (e.g., |S|=100 for S defined above). S1 ×S2 refers to the concate-
nation of sets S1 and S2, i.e.,

S1 × S2
def
= {(s1, s2) : s1 ∈ S1, s2 ∈ S2 } .

If S1 and S2 are identical, say they are the same as S, then we use Sn as the shorthand for the
concatenation of S n times, i.e.

Sn def
=

n︷ ︸︸ ︷
S × S × · · · × S

and the most frequently used one is {0, 1}n, namely, the set of all possible values of an n-bit string.
By {0, 1}∗ we refer to the set of all (arbitrarily long) binary strings, i.e.,

{0, 1}∗ = {0, 1} ∪ {0, 1}2 ∪ · · · ∪ {0, 1}i ∪ · · ·

Probability distributions. For any non-empty set X (called the sample space), a (dis-

crete) probability distribution X, defined over set X , refers to the rule that assigns a numeric
value (i.e., the probability that X = x) to each outcome x ∈ X . For example,

X def
= {0, 1, 2} define distribution X by rule Pr[X = 0] = 0.5, Pr[X = 1] = 0.2, Pr[X = 2] = 0.3

Note that all the probabilities must sum to unity. We mention that ‘
⋂

’, ‘
⋃

’, ‘\’ are set operators
for intersection, union and minus respectively.

Uniform distributions and random variables. For distribution X defined over set X , we
say that X is uniform (or flat) if for every possible outcome x ∈ X it holds that

Pr[X = x] =
1

|X |
.

1

We often use UX to denote the uniform distribution over X , and Un (instead of U{0,1}n) to denote
uniform distribution over {0, 1}n.
A random variable is a function that maps elements of the sample space to another set (usually,
but not necessarily, the set of real numbers, denoted by R). For example, consider a distribution
X over {0, 1}n, we define random variable

HW(x)
def
= “the number of 1’s in x ”

so that the outcome of HW(x) is induced by probability distribution x← X.
Note: We often use “random variables” and “probability distributions” interchangeably as (1) a
probability distribution can be considered as a special random variable (where the mapping is the
identity function); (2) a random variable (induced by a distribution) can be regarded as another

distribution, e.g., Y
def
= HW(X).

Events and independence. In probability theory, an event is a (finite) set of outcomes (a subset
of the sample space) to which a probability is assigned. Typically, when the sample space is finite,
any subset of the sample space is an event. For example, consider uniform distribution Un for some
even number n, define subset X ⊂ {0, 1}n to be the set of n-bit strings whose Hamming weight
(i.e., the number of 1’s) is n/2, i.e.,

X def
= { x ∈ X : HW (x) = n/2 }

Then, the event, denoted by E , that an outcome of Un falls into subset X , has probability

Pr[E] = Pr[Un ∈ X] =
∑
x∈X

Pr[UX = x] =
|X |
2n

=

(
n
n/2

)
2n

.

Independent events. We say that events E1 and E2 are independent iff

Pr[E1 ∩ E2] = Pr[E1] · Pr[E2]

or equivalently, Pr[E2] = Pr[E2|E1].

Theorem 1 (Bayes’ Theorem). Let E1 and E2 be events over the same sample space and that
Pr[E2] 6= 0. Then,

Pr[E1|E2] =
Pr[E1] · Pr[E2|E1]

Pr[E2]
.

Independent random variables. We say that X and Y are independent random variables if
for every possible values x and y the events X = x and Y = y are independent, i.e.,

Pr[X = x, Y = y] = Pr[X = x] · Pr[Y = y] .

polynomial, super-polynomial and negligible functions.
A function poly(·) is a polynomial (in a single indeterminate) iff it can be represented as

poly(n) = ac · nc + ac−1 · nc−1 + ac−2 · nc−2 + · · · + a1 · n+ a0

where constants ac, · · · , a0 are coefficients that uniquely define the polynomial and c is called degree
of the polynomial.

2

A function superpoly(·) is super-polynomial if for every constant c > 0 it holds that

superpoly(n) > nc

for all sufficiently large n’s.

A function negl(·) is negligible if for every constant c > 0 it holds that

negl(n) < n−c

for all sufficiently large n’s. Superpolynomial and neligible functions are reciprocals of each other.

A function overwhelm(·) is overwhelming if µ(n)
def
=1− overwhelm(n) is negligible.

A function µ(·) is non-negligible (i.e., not negligible) there exists constant c > 0 it holds that

µ(n) ≥ n−c

for infinitely many n’s.

A function µ(·) is noticeable if there exists constant c > 0 it holds that

µ(n) ≥ n−c

for all sufficiently large n’s.
Note: Non-negligible is not the same as noticeable (you may try to come up with an example
which is non-negligible but not noticeable).

Functions. Informally, f(·), g(·, ·) denote functions that takes one and two inputs respectively.
A more formal treatment will specify the domain, range and functionality. For example,

g : {0, 1}n → {0, 1}n

g(x) 7→ a · x+ b

where “+” and “·” denote addition and multiplication over GF(2n) respetively, and a ∈ {0, 1}n
and b ∈ {0, 1}n are n-bit constants (interpreted as elements over GF(2n)) that define function g.

Asymptotic notatoins. For functions f : N→ N and g : N→ N, we say

• f = O(g) if there exists some constant c such that f(n) ≤ c · g(n) for all sufficiently large n’s.

• f = Ω(g) if g = O(f).

• f = Θ(g) iff f = O(g) and g = O(f).

• f = o(g) if for every ε > 0 f(n) ≤ ε · g(n) for all sufficiently large n’s

• f = ω(g) if g = o(f).

3

Function ensembles. In cryptography, we are often talking about an ensemble of functions,
carry out their computation using Turing machine (or equivalent) algorithms, and analyze the
efficiency (or the inefficiency of breaking a cryptographic algorithm) using asymptotic notations
such as O(n), Θ(n2) (or success probability negligble in n, where n is the length of the secret key).
For (non-cryptographic) example, the function that “bitwise XOR two equal-length binary strings
and outputs their XOR sum” can be represented as an ensemble of function (indexed by n)

{ fn : {0, 1}n × {0, 1}n → {0, 1}n }n∈N

where each fn handles n-bit strings a and b and outputs a⊕b. It is easy to see that the function is
very efficient, namely, computable by a Turing machine in polynomial time (more specifically, time
O(n)).

Now we give the definition of a cryptographic function as example (we will use it in subsequent
lectures)

Definition 1 (one-way functions). f
def
= {fn : {0, 1}n → {0, 1}l(n)}n∈N is a one-way function

(ensemble) if

• (Easy-to-Compute). f can be computed by some algorithm in time poly(n).

• (Hard-to-Invert). For any probabilistic polynomial (in n) time (PPT) A, there exists a negli-
gible function negl(·) such that

Pr
x←Un, x′←A(1n,f(x))

[f(x′) = f(x)] ≤ negl(n).

where x←Un denotes sample a random x from Un, and the above probability is taken over
the choice of x over Un and the internal coins of A (which is probabilistic).

Note: hereafter we will write f : {0, 1}n → {0, 1}l(n) instead of f
def
= {fn : {0, 1}n → {0, 1}l(n)}n∈N

for simplicity.

Loosely speaking, the above primitive is easy to compute, but for any polynomial-time adver-
sary who sees only its outputs (on random inputs), it will be hard for her to invert the function
(i.e., to find any x′ satisfying f(x′) = f(x)), where the hardness refers to the fact that the success
probability is negligible in n. Thus, we just need to set an appropriate value for n to get efficiency
and security at the same time (a trade-off between them). It is one of the most fundamental prim-
itives of modern cryptography.

USEFUL Inequalities.

Theorem 2 (Union bound). if S is a sample space and E1, E2 ⊆ S are two events over S. Then
we have

Pr[E1 ∪ E2] ≤ Pr[E1] + Pr[E2]

where the equality holds iff Pr[E1 ∩ E2] = 0.

Theorem 3 (Markov Inequality). Let X be any random variable that takes non-negative real
numbers. Then, for any δ > 0

Pr[X ≥ δ · E[X]] ≤ 1

δ
.

where E[X] denotes the expectation of X.

4

Proof. Denote µ = E[X] and let X be the sample space of X. Define set

X1
def
= {x ∈ X : Pr[X = x] ≥ δµ}

Then,

µ = E[X] =
∑
x∈X

Pr[X = x] · x ≥
∑
x∈X1

Pr[X = x] · x ≥ δµ · Pr[X ∈ X1]

and thus Pr[X ∈ X1] ≤ 1/δ, which is essentially the statement desired.

Theorem 4 (Chebyshev’s inequality.). Let X be any random variable (taking real number values)
with expectation µ and standard deviation σ (i.e., V ar[X] = σ2 = E[(X − µ)2]). Then, for any
δ > 0 we have

Pr[|X − µ| ≥ δσ] ≤ 1/δ2

Proof. Define non-negative random variable Y
def
= (X − µ)2 with expectation E[Y] = σ2. Applying

Markov inequality to Y yields
Pr[Y ≥ δ2σ2] ≤ 1/δ2

which completes the proof.

We will often use the following versions of the Chernoff bound and (the more general) Hoeffding
bound.

Theorem 5 (Chernoff bound). Let X1, . . ., Xn be independent variables with 0≤Xi ≤ 1 for all
1≤i ≤ n, denote µ = E[(

∑n
i=1Xi)/n]. Then, for any ε > 0

Pr[

∣∣∣∣∑n
i=1Xi

n
− µ

∣∣∣∣ > ε] < 2−ε
2·n .

Theorem 6 (Hoeffding bound). Let X1, . . ., Xn be independent variables with bi≤Xi ≤ ai for all
1≤i ≤ n, denote µ = E[(

∑n
i=1Xi)/n]. Then, for any ε > 0

Pr[

∣∣∣∣∑n
i=1Xi

n
− µ

∣∣∣∣ > ε] < 2 exp
− 2ε2·n2∑n

i=1
(bi−ai)2 .

Other inequalities that are used in cryptography include the Jensen’s inequality, Cauchy-
Schwarz, etc. Ask Google or John for details and more.

5

