
Fundamentals of Cryptography — Handout 7.

Yu Yu

Cryptographic Hash Functions.

1 Collision Resistant Hash Functions (CRHFs)

Informally, a collision resistant hash function is a function for which it is infeasible for PPT adver-
saries to find any collisions.

Definition 1 (Collision Resistant Hash Functions). A (ensemble of) family of functions G ⊆ {g :
{0, 1}n → {0, 1}n−s(n)}, is a collision resistant hash function (CRHF) if:

• Efficient: There exists a PPT Gen that on input 1n produces a random element g of G as

output, i.e., g ← Gen(1n) where g
$←− G. Further, every g ∈ G is polynomial-time computable.

• Shrinking: The difference between input and output lengths, shrinkage (i.e. s(n)), is posi-
tive.

• Collision Resistant: For any probabilistic PPT A, there exists a negligible function negl(·)
such that

Pr
g

$←−G, (x,x′)←A(1n,g)

[x 6= x′ ∧ g(x) = g(x′)] ≤ negl(n) .

As slight abuse of notation, in the above we use g to refer to a function or the description of the
function (the textbook uses s), which is obvious from the context.

Note that a hash function is public knowledge, and unlike many other cryptographic primitives
there are no secrets.

Birthday Attacks. Assume that g : {0, 1}n → {0, 1}m (n > m) behaves like a random function
(i.e., g(Un) is close to Um), there is a trivial attack. Namely, sample distinct random inputs x1,
. . . , xq for q = O(

√
2m) we have that with high probability (e.g., 1/2) we will get a collision

g(xi) = g(xj) for xi 6=xj . Refer to Section 4.6.3 and Appendix A.4 for more details. This means
that any collision resistant hash function with output size m has security no more than m/2 bits.

Constructions of Collision Resistant Hash Functions. Despite the appealing property
of collision resistance, cryptographers found out that it is impossible to construct CRHFs from
one-way functions (or even one-way permutations) in a black box away. It is known we can base
CRHFs on hard number theoretic problems such as RSA and Discrete Logarithm, but they are
not efficient. In practice, cryptographers design CRHFs from scratch and compete for getting their
designs standardized by organizations such as NIST. There are some known candidate1 CRHFs
such as the MD5, SHA-1, and SHA-3 standards. Finally, note that any of these standards are
talking about a single function rather than a set of functions.

1Some designs are known not so secure as intended to be. Google “Xiaoyun Wang” for more details.

1

2 Universal One-way Hash Functions (UOWHFs)

A universal one-way hash function (UOWHF) has a similar but weaker guarantee of collision
resistance. Now the adversary is given a specific point (considered as a target, which is independent
of the hash functions) x and she needs to find another point x′ such that g(x) = g(x′). We give
the formal definition of UOWHF as below, where the only difference is the third condition, and it
is easy to see that a CRHF is also a UOWHF.

Definition 2 (Universal One-way Hash Functions). A (ensemble of) family of functions G ⊆ {g :
{0, 1}n → {0, 1}n−s(n)}, is a universal one-way hash function (UOWHF) if:

• Efficient: There exists a PPT Gen that on input 1n produces a random element g of G as

output, i.e., g ← Gen(1n) where g
$←− G. Further, every g ∈ G is polynomial-time computable.

• Shrinking: The difference between input and output lengths, shrinkage (i.e. s(n)), is posi-
tive.

• Target Collision Resistant (TCR): For for any x ∈ {0, 1}n, any PPT A, there exists a negligible
function negl(·) such that

Pr
g

$←−G; x′←A(1n,x,g)

[x 6= x′ ∧ g(x) = g(x′)] ≤ negl(n) .

We will often use an equivalent (although seemingly weaker) condition for target collision re-
sistance.

• Target Collision Resistant 2 (TCR2): For any PPT A, there exists a negligible function negl(·)
such that

Pr
x

$←−{0,1}n,g $←−G; x′←A(1n,x,g)

[x 6= x′ ∧ g(x) = g(x′)] ≤ negl(n) .

Note that TCR property implies TCR2, so it suffices to prove the other direction. If G =
{g : {0, 1}n → {0, 1}n−s} has property TCR2, then the following UOWHF has property TCR.

G′ = {g′(x)
def
=g(x⊕ a)|g ∈ G, a ∈ {0, 1}n}, i.e., G′ is described by g and string a.

The good thing about UOWHF is that although weaker, it suffices for many applications and
does not suffer from the birthday attacks, and it is possible to construct it from one-way func-
tions. We will introduce the simplified case, namely, the construction of UOWHFs from one-way
permutations by Naor and Yung.

Theorem 1 (UOWHFs from One-way Permutations). Let f : {0, 1}n → {0, 1}n be any (t, ε)-one-
way permutation, let H be a family of universal hash permutations over {0, 1}n, i.e.,

H = {h : {0, 1}n → {0, 1}n | h(y)
def
=h · y, where y ∈ GF (2n), ~0 6=h ∈ GF (2n) } ,

let trunc : {0, 1}n → {0, 1}n−1 be a truncating function that outputs the first n − 1 bits of input.
Then, we have that

G def
= { (trunc ◦ h ◦ f) : {0, 1}n → {0, 1}n−1 | h ∈ H }

is a family of (t− nO(1), ε)-universal one-way hash functions with 1 bit of shrinkage.

2

Proof. Suppose for contradiction that there exists a G-collision finder A of running time t − nO(1)

that on input (x, h), breaks the TCR2 with probability greater than ε, i.e.,

Pr
x

$←−{0,1}n,h $←−H, x′←A(x,h)

[x 6= x′ ∧ h(f(x))1,...,n−1 = h(f(x′))1,...,n−1] > ε

where z1,...,n−1 denotes the first n− 1 bits of z. We define algorithm InvA (that inverts f on input
y∗ ∈ {0, 1}n by invoking A) as in Algorithm 1. We denote by E the event that f(x)6=y∗.

Algorithm 1 InvA that inverts f on input y∗ using random coins (x, v).

Input: y∗
$←− {0, 1}n (note:f(Un) is identical to Un as f is a permutation)

Sample x
$←− {0, 1}n

if f(x) = y∗ then
Output x and terminate.

end if

let h := (f(x)− y∗)−1 · v, where v =

n−1︷ ︸︸ ︷
0 . . . 0 1

{note: The above implies h(f(x))1,...,n−1 = h(y∗)1,...,n−1 due to the algebraic structure of
GF (2n). }
x′ ← A(x, h)
if f(x′)=y∗ then

Output x′

else
Output ⊥

end if
Terminate

By Claim 1.1, conditioned on E it is equivalent to consider that InvA samples (x,h) from {0, 1}n×
H uniformly and independently, and then determine the value of y∗. Further, if f(x) 6=y∗, x 6= x′

(which implies f(x) 6= f(x′)) and h(f(x))1,...,n−1 = h(f(x′))1,...,n−1 = h(y∗)1,...,n−1 then we must
have f(x′) = y∗ since trunc◦h is strictly a 2-to-1 function. Therefore, InvA inverts f with the
following probability

Pr
y∗←f(Un), x

$←−{0,1}n
[f(InvA(y∗)) = y∗]

≥ Pr
x

$←−{0,1}n,y∗ $←−{0,1}n
[f(x) = y∗]

+ Pr[E] · Pr
x

$←−{0,1}n,h $←−H,x′←A(x,h)

[h(f(x))1,...,n−1 = h(f(x′))1,...,n−1 | E]

≥ 2−n + (1− 2−n)ε = ε + 2−n(1− ε) > ε ,

which completes the proof by reaching a contradiction. Note the inversion algorithm takes time tA
(the running time of A, which is t− nO(1)) plus some light computation (which is accounted for by
nO(1)).

Claim 1.1 (equivalent sampling). Let the values h, v, x, y∗ be sampled as in Algorithm 1, then

conditioned on the event E (i.e., y∗ 6= f(x)), it is equivalent to sample (x, h)
$←− {0, 1}n × H

uniformly and independently and then determine y∗ := f(x)− v · h−1.

3

Proof. We know that x is uniformly sampled from {0, 1}n by definition, and thus it suffices to
show that “fix any x, and conditioned on E (i.e., Y ∗ is uniform over {0, 1}n \ {f(x)}), it holds
that h is uniform over H”. As v 6= ~0, it follows that h = (f(x) − Y ∗)−1 · v is uniform over
{0, 1}n \{~0} which is exactly H. Finally, for any given (x, h, v), one efficiently determines the value
y∗ = f(x)− v · h−1.

3 Merkle-Damg̊ard Domain Extension for CRHFs and UOWHFs

Similar to PRGs, once we get a PRG with small stretch, we can extend the range by sequential
composition. Now we do the domain extension in a symmetric way for CRHFs and UOWHFs.

Lemma 2 (Merkle-Damg̊ard Domain Extension for CRHFs). Let

G ⊆ {g : {0, 1}n → {0, 1}n−s}
for each g (xi, ri) 7→ (xi+1) ,where xi, xi+1 ∈ {0, 1}n−s, ri ∈ {0, 1}s

be a (t,ε)-secure CRHF, and for any q ∈ N define Gq ⊆ {gq : {0, 1}n+(q−1)·s → {0, 1}n−s, g ∈ G}
where

gq(x1, r1, r2, . . . , rq) = g(. . .g(g(x1, r1), r2), . . . , rq)

xi ∈ {0, 1}n−s and ri ∈ {0, 1}s. Then, we have that Gq is a (t− q · tg, ε)-secure CRHF, where tg is
the running time for computing function g.

Proof. Suppose there exists A of running time t− qtg such that

Pr
g

$←−G; (y,y′)←A(1n,g)

[y 6= y′ ∧ gq(y) = gq(y′)] > ε .

We define A′ on input g as below:

• Invoke (y, y′)← A(g), where y = (x1, r1, r2, . . . , rq) and y′ = (x′1, r
′
1, r
′
2, . . . , r

′
q).

• If (x1, r1, r2, . . . , rq) 6= (x′1, r
′
1, r
′
2, . . . , r

′
q) and

g(. . .g(g(x1, r1), r2), . . . , rq) = g(. . .g(g(x′1, r
′
1), r

′
2), . . . , r

′
q)

Then, there must exist i ∈ [q]2 such that (xi, ri) 6= (x′i, r
′
i) and g(xi, ri) = g(x′i, r

′
i) where

xi = g(. . .g(g(x1, r1), r2), . . . , ri−1) and x′i = g(. . .g(g(x′1, r
′
1), r

′
2), . . . , r

′
i−1)

• Output (xi, ri) and (x′i, r
′
i).

It is easy to see that A′ finds collision for g with the same probability (i.e., > ε) as A does for gq,
which completes the proof.

2[q]
def
= {1, . . . , q}.

4

Lemma 3 (Merkle-Damg̊ard Domain Extension for UOWHFs). Let

G ⊆ {g : {0, 1}n → {0, 1}n−s}
for each g (xi, ri) 7→ (xi+1) ,where xi, xi+1 ∈ {0, 1}n−s, ri ∈ {0, 1}s

be a (t,ε)-secure UOWHF, and for any q ∈ N define Gq ⊆ {gq : {0, 1}n+(q−1)·s → {0, 1}n−s, g1, . . . , gq ∈
G} where

gq(x1, r1, r2, . . . , rq) = gq(. . .g2(g1(x1, r1), r2), . . . , rq)

xi ∈ {0, 1}n−s and ri ∈ {0, 1}s. Then, we have that Gq is a (t− q · tg, qε)-secure UOWHF, where
tg is the running time for computing function g.
That is, in case of UOWHFs, we cannot3 just compose a single g with itself many times, but have
to use independent gi at every iteration.

Proof. Now we use TCR (instead of TCR2) for our convenience. Suppose there exists some y =
(x1, r1, r2, . . . , rq) and A of running time t− qtg such that

Pr
g1

$←−G,...,gq $←−G; y′←A(1n,y,g1,...,gq)

[y 6= y′ ∧ gq(y) = gq(y′)] > qε .

where y′ = (x′1, r
′
1, r
′
2, . . . , r

′
q). Now sample i∗

$←− [q], g1
$←− G, . . . , gi−1

$←− G,

xi∗ = gi∗−1(. . .g2(g1(x1, r1), r2), . . . , ri∗−1)

Now we define algorithm A′ below that on g
$←− G finds a collision for (xi∗ , ri∗).

• Let i∗, g1, . . . , gi∗−1 be sampled as above, sample gi∗+1, . . . , gq
$←− G, let gi∗ = g.

• Invoke y′ ← A(y, g1, . . . , gq), where y = (x1, r1, r2, . . . , rq) and y′ = (x′1, r
′
1, r
′
2, . . . , r

′
q).

• If (x1, r1, r2, . . . , rq) 6= (x′1, r
′
1, r
′
2, . . . , r

′
q) and

gq(. . .g2(g1(x1, r1), r2), . . . , rq) = gq(. . .g2(g1(x
′
1, r
′
1), r

′
2), . . . , r

′
q)

Then, there must exist i ∈ [q] such that (xi, ri) 6= (x′i, r
′
i) and gi(xi, ri) = gi(x

′
i, r
′
i) where

xi = gi−1(. . .g2(g1(x1, r1), r2), . . . , ri−1) and x′i = gi−1(. . .g2(g1(x
′
1, r
′
1), r

′
2), . . . , r

′
i−1)

• If at the same time we have i∗ = i (which occurs with probability 1/q), we get a collision for
gi∗ = g, i.e., (xi∗ , ri∗) 6= (x′i∗ , r

′
i∗) and g(xi∗ , ri∗) = g(x′i∗ , r

′
i∗). Produce (x′i∗ , r

′
i∗) as output.

Therefore,

Pr
i∗

$←−[q],g1
$←−G,..., gi∗−1

$←−G; g
$←−G , (x′

i∗ ,r
′
i∗)←A′((xi∗ ,ri∗),g)

[(xi∗ , ri∗) 6= (x′i∗ , r
′
i∗) ∧ g(xi∗ , ri∗) = g(x′i∗ , r

′
i∗)]

≥ Pr
g1

$←−G,...,gq $←−G; y′←A(1n,y,g1,...,gq)

[y 6= y′ ∧ g(y) = g(y′)] · Pr[i∗ = i]

> qε · (1/q) = ε .

3By “cannot” I mean people don’t have a proof for that, but let me know if you do.

5

It follows by an averaging argument that there exist some fixed values for i∗, g1, . . . , gi∗−1, (and
thus a fixed value for xi∗ , ri∗), such that

Pr
g

$←−G , (x′
i∗ ,r
′
i∗)←A′((xi∗ ,ri∗),g)

[(xi∗ , ri∗) 6= (x′i∗ , r
′
i∗) ∧ g(xi∗ , ri∗) = g(x′i∗ , r

′
i∗)] > ε

which completes the proof by reaching a contradiction. Note that gi∗+1,. . . ,gq are the internal
random coins of A′, so we don’t need to write them explicitly in presence of A′.

More Efficient Domain Extensions - the Merkle-Damg̊ard Tree We can use the above
technique to transform CRHFs/UOWHFs with small shrinkage into ones with large shrinkage.
Once we get a length-halving CRHF/UOWHF G = {g : {0, 1}2m → {0, 1}m}, we can do domain
extension more efficiently using the binary tree structure (symmetric to the GGM construction of
PRF from PRG). See Section 4.6.4 from the KL book for the case of CRHFs (the case of UOWHFs
are quite similar but have to use independent g at each level of the tree).

Applications of Cryptographic Hash Functions Hash functions have a wide variety of ap-
plications, such as digital signatures (another topic of modern cryptography), secure fingerprinting,
and key derivation function, etc.
Homework 6.

Exercise 1. Reprove the generalized version of Theorem 1, where the shrinkage is s bits instead
of a single bit. That is, let f : {0, 1}n → {0, 1}n be any (t, ε)-one-way permutation, let H be a
family of universal hash permutations over {0, 1}n, i.e.,

H = {h : {0, 1}n → {0, 1}n | h(y)
def
=h · y, where y ∈ GF (2n), ~0 6=h ∈ GF (2n) } ,

let trunc : {0, 1}n → {0, 1}n−s be a truncating function that outputs the first n − s bits of input.
Then, show that for small value of s,

G def
= { (trunc ◦ h ◦ f) : {0, 1}n → {0, 1}n−s | h ∈ H }

is a family of (t′, ε′)-universal one-way hash functions with s bits of shrinkage. Give the proof
quantitatively (t′ and ε′ should be functions of t, ε, s.).

We show that G is a (t − nO(1), 2s · ε)-UOWHF (where for small value of s the term 2sε is
negligible if ε is) as below.

Proof. Suppose for contradiction that there exists a G-collision finder A of running time t − nO(1)

that on input (x, h), breaks the TCR2 with probability greater than ε, i.e.,

Pr
x

$←−{0,1}n,h $←−H, x′←A(x,h)

[x 6= x′ ∧ h(f(x))1,...,n−s = h(f(x′))1,...,n−s] > 2s · ε

where z1,...,n−s denotes the first n− s bits of z. We define algorithm InvA (that inverts f on input
y∗ ∈ {0, 1}n by invoking A) as in Algorithm 2. We denote by E the event that f(x)6=y∗.

By Claim 3.1, conditioned on E it is equivalent to consider that InvA samples (x,h,v) from
{0, 1}n × H × V uniformly and independently (see the definition of V in Algorithm 2), and then
determine the value of y∗. Note that A takes as input only (x, h) (i.e., independent of v). Therefore,
conditioned on E and and that A finds a collision x 6= x′ ∧ h(f(x))1,...,n−s = h(f(x′))1,...,n−s, we

6

Algorithm 2 InvA that inverts f on input y∗ using random coins (x, v).

Input: y∗
$←− {0, 1}n (note:f(Un) is identical to Un as f is a permutation)

Sample x
$←− {0, 1}n

if f(x) = y∗ then
Output x and terminate.

end if
let h := (f(x)− y∗)−1 · v, where v

$←− V def
= {v ∈ {0, 1}n : v1,...,n−s = 0n−s ∧ v 6= 0n }

{note: The above implies h(f(x))1,...,n−s = h(y∗)1,...,n−s due to the algebraic structure of
GF (2n). }
x′ ← A(x, h)
if f(x′)=y∗ then

Output x′

else
Output ⊥

end if
Terminate

have that y∗ is uniform over set {y∗ := f(x)− v · h−1, v ∈ V} of size |V| = 2s− 1. Recall that f(x′)
is also a member of the set, and thus y∗ = f(x′) occurs with probability 1/(2s − 1).

Therefore, InvA inverts f with the following probability

Pr
y∗←f(Un), x

$←−{0,1}n
[f(InvA(y∗)) = y∗]

≥ Pr
x

$←−{0,1}n,y∗ $←−{0,1}n
[f(x) = y∗]

+ Pr[E] · Pr
x

$←−{0,1}n,h $←−H,x′←A(x,h)

[h(f(x))1,...,n−s = h(f(x′))1,...,n−s ∧y∗ = f(x′) | E]

≥ 2−n + (1− 2−n) · (2s · ε) · 1

2s − 1
> ε · 1− 2−n

1− 2−s
≥ ε ,

which completes the proof by reaching a contradiction. Note the inversion algorithm takes time tA
(the running time of A, which is t− nO(1)) plus some light computation (which is accounted for by
nO(1)).

Claim 3.1 (equivalent sampling). Let the values h, v, x, y∗ be sampled as in Algorithm 2, then

conditioned on the event E (i.e., y∗ 6= f(x)), it is equivalent to sample (x, h, v)
$←− {0, 1}n×H×V

uniformly and independently and then determine y∗ := f(x)− v · h−1.

Proof. We know that (x, v) is uniformly sampled from {0, 1}n×V by definition, and thus it suffices
to show that “fix any (x, v), and conditioned on E (i.e., Y ∗ is uniform over {0, 1}n \ {f(x)}), it
holds that h is uniform over H”. As v 6= ~0, it follows that h = (f(x) − Y ∗)−1 · v is uniform over
{0, 1}n \{~0} which is exactly H. Finally, for any given (x, h, v), one efficiently determines the value
y∗ = f(x)− v · h−1.

An alternative proof. We can also give a simpler proof based on the statement of Theorem 1.

7

That is, suppose for contradiction we have

Pr
x

$←−{0,1}n,h $←−H, x′←A(x,h)

[x 6= x′ ∧ h(f(x))1,...,n−s = h(f(x′))1,...,n−s] > 2s · ε

Then condition on x 6= x′ ∧ h(f(x))1,...,n−s = h(f(x′))1,...,n−s the probability that h(f(x))1,...,n−1 =
h(f(x′))1,...,n−1 is 1/2s−1. Therefore,

Pr
x

$←−{0,1}n,h $←−H, x′←A(x,h)

[x 6= x′ ∧ h(f(x))1,...,n−1 = h(f(x′))1,...,n−1] > 2s · ε/2s−1 ≥ ε

which is a contradiction to Theorem 1 and thus completes the proof.

8

	Collision Resistant Hash Functions (CRHFs)
	Universal One-way Hash Functions (UOWHFs)
	Merkle-Damgård Domain Extension for CRHFs and UOWHFs

